Total synthesis of an antigenic heptasaccharide motif found in the cell-wall lipooligosaccharide of Mycobacterium gordonae strain 989

Chinmoy Mukherjee . Anup Kumar Misra

Received: 8 August 2007 /Revised: 29 December 2007 /Accepted: 9 January 2008 / Published online: 19 February 2008 \circledcirc Springer Science + Business Media, LLC 2008

Abstract An antigenic heptasaccharide motif of the cell-wall glycolipid of Mycobacterium gordonae strain 989 has been synthesized in a linear fashion by using a general glycosylation condition and minimum number of protecting group manipulation. All suitably protected monosaccharide intermediates were prepared from commercially available reducing sugars following some novel methodologies recently developed in our laboratory. Most of the synthetic intermediates were obtained as solid compounds in excellent yields.

Keywords Carbohydrates · Oligosaccharides · Glycosylations . Vaccines . Mycobacterium gordonae 989

Introduction

False infections or artifactual clustering of real infections caused by non-tubercular mycobacteria (NTM) are known for several years and continue to be a serious concern, because of the problems associated with the unnecessary administration of therapeutics [\[1](#page-12-0)–[4](#page-12-0)]. A number of NTM species have been isolated from water and soil, which include Mycobacterium gordonae, Mycobacteriaum avium complex, Mycobacterium fortuitum, Mycobacterium kansasii, Mycobacterium xenopi, Mycobacterium terrae etc. [\[5](#page-12-0)]. The mycobacterial infections have been seriously revived since the outbreak of acquired immunodeficiency syndrome

C.D.R.I. communication no. 7252.

C. Mukherjee \cdot A. K. Misra (\boxtimes) Medicinal and Process Chemistry Division, Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226 001, India e-mail: akmisra69@rediffmail.com

(AIDS) [[6,](#page-12-0) [7\]](#page-12-0). Recently, infections due to mycobacteria, apart from tuberculosis, are on the rise particularly in patients with AIDS. Among several species of NTM, Mycobacterium gordonae (M. gordonae) is widely distributed in soil and water [[8\]](#page-12-0). In humans, M. gordonae can be found in sputum, gastric fluid and urine [\[9](#page-12-0)]. Although, earlier M. gordonae was considered as a benign commensal, and sometimes termed as *Mycobacterium aque* or "tapwater bacillus" [\[10\]](#page-12-0), recently a number of infections involving skin and soft tissues, cornea, liver and lower respiratory tract, trauma and immunosuppression have been reported [[11,](#page-12-0) [12\]](#page-12-0). Particularly, in patients suffering from AIDS, M. gordonae behaves as an opportunistic pathogen causing pulmonary diseases, which are quite indistinguishable from that caused by M. tuberculosis. Administration of antituberculosis therapy such as isoniazid, pyrazinamide, ethambutol and cycloserine can not cure the patients because M. gordonae is resistant to these drugs [[12\]](#page-12-0). In order to provide the required chemotherapy avoiding such confusion, it is essential to identify atypical Mycobacteria from other species of Mycobacteria.

M. gordonae strain 989 belongs to atypical nontuberculotic Mycobacteria, which contains a large number of trehalose-containing glycolipids in its cell wall, some of which possess antigenicity [[13](#page-12-0)–[15\]](#page-12-0). Isolation and structural elucidation of a unique trehalose linked heptasaccharide motif known to have antigenic activity from the cell wall of M. gordonae strain 989 has been reported by Brennan et al. (Fig. [1](#page-1-0)) [[16\]](#page-12-0). It is well established that specific oligosaccharide antigen can produce specific immune response through the development of antibodies against it. This antigenic heptasaccharide motif could be useful to generate corresponding antibodies for the serodiagnosis of the individual mycobacterial infection and to design an antibacterial vaccine against this particular strain.

Fig. 1 Structure of heptasaccharide motif of the glycolipid found in the cell-wall of M. gordonae strain 989

In the medicinal chemistry, carbohydrate based vaccines are well known for their effectiveness against pathogenic bacterial infections. A number of carbohydrate vaccines used in the clinics are prepared from the polysaccharides obtained from the natural sources. Recently, Roy et al. reported a synthetic version of the Haemophilus influenzae type b (Hib) vaccine [[17\]](#page-13-0). In the recent past several reports have appeared in the literature aiming to develop synthetic version of the polysaccharide-based carbohydrate vaccine candidates against Shigella, Cholera, pneumoccaus, cancer, anthrax, malaria, leishmania etc. [\[18](#page-13-0)–[34](#page-13-0)]. In order to induce a specific immune response in the host using a carbohydrate vaccine candidate, antigenic oligosaccharides are attractive targets. Although, oligosaccharides can be isolated from the respective natural sources, large quantities of the oligosaccharides can only be accessed from the efficient chemical synthetic strategies. Essentially, the synthetic oligosaccharide motif is required to conjugate with a carrier protein through a spacer arm to be used as an antigen for the production of a specific immune response. Therefore, the synthetic oligosaccharide motif should contain a temporary protecting group at the reducing terminus, which can be removed to attach the oligosaccharide unit with the carrier protein. However, the first step for the preparation of a glycoconjugate is to develop a concise chemical synthetic strategy for the synthesis of a target oligosaccharide moiety containing a temporary protecting group at the reducing terminus. We report herein the first total synthesis of the heptasaccharide motif of the lipooligosaccharide found in the cell wall of M. gordonae strain 989 as its 4 methoxyphenyl glycoside (Fig. 2) with preserved natural structure for its use to evoke antibodies, necessary for serodiagnosis of the individual strain.

Fig. 2 Chemical structure of the synthesized heptasaccharide as its 4 methoxyphenyl glycoside (1)

Fig. 3 Suitably protected monosaccharide derivatives used for the synthesis of heptasaccharide as its 4-methoxyphenyl glycoside (1)

Results and discussion

The synthesis of the target heptasaccharide as its 4 methoxyphenyl glycoside (1) was achieved by a series of stereoselective glycosylation and judicious functional group manipulations. A series of suitably functionalized monosaccharide derivatives (Fig. 3) used in the construction of the target molecule, were prepared from commercially available reducing sugars using several novel methodologies developed in our laboratory and reported in the literature.

Synthesis of the protected monosaccharide synthons are presented in Scheme [1.](#page-2-0) 4-Methoxyphenyl 2,4-di-O-benzyl-α-L-rhamnopyranoside (3) was prepared from 4-methoxyphenyl 4-O-benzyl-2,3-O-isopropylidene-α-L-rhamnopyranoside (2) [\[35](#page-13-0)] using a sequence of reactions involving acidic hydrolysis of isopropylidene group followed by selective benzylation under phase transfer reaction conditions. Selective 4-methoxybenzylation of ethyl 4,6-O-benzylidene-1-thio-β-D-glucopyranoside (4) [\[36](#page-13-0)] via stannylidene acetal formation [[37\]](#page-13-0) followed by conventional acetylation furnished ethyl 2-O-acetyl-4,6-O-benzylidene-3-O-(4 methoxybenzyl)-1-thio-β-D-glucopyranoside (5). Tin mediated [[37\]](#page-13-0) selective 4-methoxybenzylation of ethyl 4- O-benzyl-1-thio-α-L-rhamnopyranoside (6) [\[38](#page-13-0)] followed by acetylation furnished compound 7 in excellent yield. Compound 8 was also prepared from compound 6 in excellent yield following the similar reaction sequences except a base mediated methylation [[39](#page-13-0)] in stead of acetylation. Removal of isopropylidene group from ethyl 3,4-O-isopropylidene-2-O-methyl-1-thio-β-L-fucopyranoside (9) [\[40](#page-13-0)] followed by tin mediated selective benzylation [\[37](#page-13-0)] and acetylation furnished compound 10 in excellent yield. Preparation of ethyl 2,3,4-tri-O-acetyl-β-D-xylopyranoside (11) [\[41\]](#page-13-0) is well documented in the literature. Yields are excellent in most of the reactions (Scheme [1\)](#page-2-0). After having the suitably functionalized monosaccharide intermediates at hand, construction of the target heptasaccharide was attempted by stereoselective glycosylations of monosaccharide intermediates and functionalization of the glycoside intermediates.

Iodonium ion promoted β-selective glycosylation of compound 3 with the thioglycoside donor 5 in the presence

Scheme 1 Reagents: a (1) 80% aq. AcOH, 75°C, 1.5 h; (2) benzyl bromide, 5% aq. NaOH, Bu₄NBr, CH₂Cl₂, 80% in two steps; $b(1)$ Bu₂SnO, CH₃OH, 80°C, 2 h, then 4-methoxybenzyl chloride, CsF, DMF, 80°C, 16 h, 72%; (2) acetic anhydride, pyridine, r t, 2 h, quantitative; $c(1)$ Bu₂SnO, toluene, 110° C, 4 h, then 4-methoxybenzyl chloride, 80°C, 16 h, 75%; (2) acetic anhydride, pyridine, r t, 2 h,

of a combination of N-iodosuccinimide (NIS) and trimethylsilyl trifluoromethanesulfonate (TMSOTf) [\[42,](#page-13-0) [43\]](#page-13-0) furnished the disaccharide derivative 12 in 81% yield. Conversion of the acetyl group to the benzyl group of compound 12 in one step [\[39](#page-13-0)] using benzyl bromide and sodium hydroxide furnished compound 13 in 84% yield. Oxidative removal of 4-methoxybenzyl group using dichloro-dicyano-benzoquinone (DDQ) [\[44](#page-13-0)] in a bi-phasic reaction condition resulted in the formation of disaccharide acceptor 14 in 86% yield. α -Selective condensation of disaccharide derivative 14 with thioglycoside 7 in the presence of NIS-TMSOTf [\[42](#page-13-0), [43](#page-13-0)] afforded trisaccharide derivative 15 in 85% yield, which was deacetylated using sodium methoxide to give trisaccharide acceptor 16 in quantitative yield. Formation of exclusive α -glycosidic linkage in the trisaccharide derivative 15 was confirmed from its ¹H NMR [δ 5.33 {d, J=1.7 Hz, H-1_A (α-D-Rhap)}, 5.21 {d, J=1.1 Hz, H-1_C (α -D-Rhap)}, 4.98 {d, J=7.8 Hz, H-1_B (β-D-Glc*p*)}] and ¹³C NMR spectra [δ 103.7 {($J_{C-1/H-1}$) 164.2 Hz, C-1_B (β-D-Glcp)}, 98.4 {J_{C-1/H-1} 172.0 Hz, C- 1_C (α-D-Rhap)}, 97.3 {($J_{C-1/H-1}$ 172.5 Hz, C-1_A (α-D-Rhap)}] [\[45](#page-13-0)–[47\]](#page-13-0). Compound 16 was allowed to condense with thioglycoside donor 11 in the presence of NIS-TMSOTf [[42,](#page-13-0) [43\]](#page-13-0) to furnish the tetrasaccharide derivative 17 in 82% yield. Presence of signals at δ 5.32 $\{d, J=$ 1.7 Hz, H-1_A (α-D-Rhap)}, 5.26 {d, J=1.2 Hz, H-1_C (α-D-Rhap)}, 4.99 {d, J=7.5 Hz, H-1_B (β -D-Glcp)} and 4.50 {d, J=7.7 Hz, H-1_D (β-D-Xylp)}] in the ¹H NMR and δ 103.7 ${C-1_B (\beta-D-Glcp)}$, 101.9 ${C-1_D (\beta-D-Xylp)}$, 99.6 ${C-1_C}$ $(\alpha$ -D-Rhap)} 97.2 {C-1_A (α -D-Rhap)} in the ¹³C NMR spectrum of compound 17 supported the formation of $β$ linkage of the D-xylose moiety. Oxidative removal of 4 methoxybenzyl group in compound 17 using DDQ [[44\]](#page-13-0) afforded the tetrasaccharide acceptor 18 in 86% yield. Further, α -selective coupling of compound 18 with thio-

quantitative; $d(1)$ Bu₂SnO, toluene, 110°C, 4 h, then 4-methoxybenzyl chloride, 80°C, 16 h, 75%; (2) CH3I, NaOH, DMF, 5°C, 3 h, 86%; e (1) 80% aq. AcOH, 80°C, 1.5 h; (2) Bu₂SnO, toluene, 110°C, 4 h, then benzyl bromide, Bu4NBr, 80°C, 12 h; (3) acetic anhydride, pyridine, r t, 1.5 h, 76% in three steps

glycoside 8 in the presence of NIS-TMSOTf [\[42](#page-13-0), [43](#page-13-0)] gave pentasaccharide derivative 19 in 84%, which was treated with DDQ [[44\]](#page-13-0) to produce pentasaccharide acceptor 20 in 88% yield. Presence of signals at [δ 5.32 {d, $J=1.7$ Hz, H-1_A (α-D-Rhap)}, 5.26 {brs, H-1_C (α-D-Rhap)}, 5.08 {brs, H-1_E (α-D-Rhap)}, 4.95 {d, J=7.7 Hz, H-1_B (β-D-Glcp)}, 4.73 {d, $J=7.0$ Hz, H-1_D (β-D-Xylp)}] in the ¹H NMR and [δ 103.8 $\{J_{\text{C-1/H-1}}\}$ 163.5 Hz, C-1_B (β-D-Glcp)}, 100.5 $\{J_{\text{C-1/H-1}}\}$ 159.7 Hz, C-1_D (β-D-Xylp)}, 99.5 {2 C, J_{C-1/H-1} 171.0 Hz each, C-1_C and C-1_E (2 α -D-Rhap)}, 97.2 {J_{C-1/H-1} 169.5 Hz, C-1_A (α -D-Rhap)}] in the ¹³C NMR spectra confirmed the formation of compound 19. NIS-TMSOTf [\[42](#page-13-0), [43](#page-13-0)] promoted glycosylation of pentasaccharide acceptor 20 with thioglycoside donor 5 furnished hexasaccharide derivative 21 in 82% yield. Presence of signals [δ 103.9 ${C-1_B (\beta-D-Glcp)}$, 101.2 ${C-1_D (\beta-D-Xylp)}$, 100.4 {C-1_F (β-D-Glcp)}, 99.9 {C-1_E (α-D-Rhap)}, 99.4 {C-1_C (α-D-Rhap)}, 97.2 {C-1_A (α-D-Rhap)}] in the ¹³C NMR spectrum supported the formation of compound 21 (Scheme [2](#page-3-0)). Following a one-pot, two-step reaction protocol [[39](#page-13-0)] compound 21 was treated with benzyl bromide in the presence of solid sodium hydroxide to give benzylated hexasaccharide derivative 22 in 90% yield. Oxidative removal of 4-methoxybenzyl group in hexasaccharide derivative 22 using DDQ [[44](#page-13-0)] afforded the hexasaccharide acceptor 23 in 86% yield. Final α -selective glycosylation of hexasaccharide acceptor 23 with thioglycoside donor 10 in the presence of NIS-TMSOTf [[42](#page-13-0), [43](#page-13-0)] furnished heptasaccharide derivative 24 in 76% yield. Formation of the compound 24 was supported by the appearance of a signature peak at δ 5.50 {d, J=4.0 Hz, 1 H, H-1_G (α -D-Fucp)} in the ¹H NMR and presence of signals at δ [104.4 (C-1_D), 103.7 (C-1_B), 103.4 (C-1_F), 101.7 (PhCH), 101.6 (PhCH), 100.4 (C-1_E), 100.1 (C-1_C), 98.0 (C-1_G), 97.3 (C-1_A)] in the ¹³C NMR spectrum.

Scheme 2 Reagents: a N-Iodosuccinimide, TMSOTf, MS 4 Å, CH₂Cl₂, −40°C, 30 min, (81% for 12, 85% for 15, 82% for 17, 84% for 19, 82% for 21); *b* benzyl bromide, NaOH, Bu₄NBr, THF, r t, 3 h,

84%; c DDQ, CH₂Cl₂-H₂O (1:1), r t, 2 h, (86% for 14, 86% for 18, 88% for 20); d 0.1 M CH₃ONa, CH₃OH–CH₂Cl₂ (4:1), r t, 3 h, quantitative

Removal of benzylidene acetals and benzyl groups of heptasaccharide derivative 24 under a global deprotection condition using hydrogenolysis over Pearlman's catalyst [\[48](#page-13-0)] afforded target heptasaccharide 1 as its 4-methoxyphenyl glycoside in 81% yield, which was further purified through Sephadex LH-20 column using methanol–water as eluant. The formation of the compound 1 was confirmed from its 1D and 2D NMR and mass spectral analysis. Characteristic signals at δ [5.65 (brs, H-1_C), 5.50 (brs, 2 H, $H-I_A$ and $H-I_G$), 5.31 (brs, $H-I_E$), 4.71 (d, J=7.9 Hz, 2 H, H-1_B and H-1_F), 4.56 (d, J=7.5 Hz, H-1_D)] in the ¹H NMR and at δ [105.4 (C-1_D), 103.9 (C-1_B), 103.7 (C-1_F), 99.9 (C-1_G), 98.9 (C-1_A), 98.5 (C-1_E), 96.3 (C-1_C)] in the ¹³C NMR spectra supported its formation (Scheme [3](#page-4-0)). Most of the synthetic intermediates are obtained as solid compounds in high yields. Use of a general glycosylation condition and similar kind of protecting group strategy makes the synthetic scheme viable for a scale-up preparation. A series of modified reaction protocols recently developed by us and found in the literature have been applied successfully for the synthesis of the target heptasaccharide 1.

Conclusion

In summary, a straightforward linear synthesis of a heptasaccharide motif with intact natural structure, found in the cell-wall of Mycobacterium gordonae strain 989 has been achieved using sequential glycosylations and minimum number of protecting group manipulations. A com-

Scheme 3 Reagents: a Benzyl bromide, NaOH, Bu₄NBr, THF, r t, 5 h, 90%; *b* DDQ, CH₂Cl₂-H₂O (1:1), 2 h, 86%; *c* N-iodosuccinimide, TMSOTf, MS 4 Å, CH₂Cl₂, -40°C, 30 min, 76%; d H₂, 20% Pd(OH)₂–C, CH₃OH–toluene (1:1), 24 h, 81%

mon glycosylation condition has been used throughout the synthesis and similar protecting group (4-methoxybenzyl group) has been used to make the synthetic strategy more general for a scale-up synthesis, if necessary. All glycosylation steps are reasonably fast, highly reproducible and high yielding. The structure of the naturally found heptasaccharide is preserved in the synthetic heptasaccharide 1

(i.e. presence of an acetyl group and a methoxy group at the non-reducing L-fucose terminus and a methoxy group at the middle L-rhamnose moiety). 4-Methoxy phenyl group can serve as a temporary anomeric protecting group. It can be removed under standard reaction conditions whenever it is necessary to couple the heptasaccharide moiety to a carrier protein for the preparation of glycoconjugates to raise antibody against the synthetic hapten.

Experimental section

General methods All the reactions were monitored by thin layer chromatography over silica gel coated TLC plates. The spots on TLC were visualized by warming ceric sulphate $(2\% \text{ Ce(SO₄)₂)$ in 2N H₂SO₄) sprayed plates in hot plate. Silica gel 230–400 mesh was used for column chromatography. ¹H and ¹³C NMR, 2DCOSY, HSQC spectra were recorded on Brucker Advance DPX 200 and 300 MHz using CDCl₃ and D_2O as solvents and TMS as internal reference unless stated otherwise. Chemical shift values are expressed in δ ppm. ESI-MS were recorded on a MICROMASS QUTTRO II triple quadrupole mass spectrometer. Elementary analysis was carried out on Carlo ERBA-1108 analyzer. Optical rotations were measured at 25°C on a Rudolf Autopol III polarimeter. Commercially available grades of organic solvents of adequate purity are used in many reactions.

4-Methoxyphenyl 2,4-di-O-benzyl-α-L-rhamnopyranoside (3) A solution of compound 2 (10 g, 25 mmol) in 80% aq. acetic acid (200 ml) was allowed to stir at 75°C for 1.5 h. The solvents were evaporated and co-evaporated with toluene $(3 \times 50 \text{ ml})$ under reduced pressure. To a solution of the diol derivative in CH_2Cl_2 (150 ml) were added 5% aq. NaOH (80 ml), benzyl bromide (3.5 ml, 29.5 mmol) and Bu4NBr (200 mg) and the reaction mixture was allowed to stir at room temperature for 5 h. The reaction mixture was diluted with CH_2Cl_2 (100 ml). The organic layer was washed with water, dried $(Na₂SO₄)$ and evaporated to dryness. The crude product was purified over $SiO₂$ using hexane–EtOAc $(2:1)$ as eluant to give pure compound 3 (9 g, 80%); colorless oil; $[\alpha]_D^{25}$ –51.6 (c 1.5, CHCl₃), IR (neat): 2,926, 2,365, 1,649, 1,510, 1,460, 1,392, 1,221, 1,105, 1,033, 754, 697 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.42–7.28 (m, 10 H, Ar-H), 6.97 (d, J=9.1 Hz, 2 H, Ar-H), 6.83 (d, J=9.1 Hz, 2 H, Ar-H), 5.43 (d, J=1.2 Hz, 1 H, H-1), 4.95 (d, $J=11.2$ Hz, 1 H, PhC H_2), 4.82 (d, $J=$ 11.8 Hz, 1 H, PhCH₂), 4.72 (d, J=11.2 Hz, 1 H, PhCH₂), 4.70 (d, $J=11.8$ Hz, 1 H, PhC H_2), 4.17 (dd, $J=9.2$ and 3.7 Hz, 1 H, H-3), 3.95–3.93 (m, 1 H, H-2), 3.90–3.82 (m, 1 H, H-5), 3.80 (s, 3 H, OCH3), 3.43 (t, J=9.3 Hz, 1 H, H-4), 1.35 (d, J=6.3 Hz, 3 H, CCH₃); ¹³C NMR (75 MHz,

CDCl3): δ 154.8 (Ar-C), 150.3 (Ar-C), 138.5 (Ar-C), 137.6 (Ar-C), 128.6–127.7 (10 C, Ar-C), 117.4 (2 C, Ar-C), 114.5 (2 C, Ar-C), 95.9 (C-1), 82.2 (C-4), 78.4 (C-2), 75.0, 73.2 $(2 \text{ PhCH}_2), 71.5 \quad (C-3), 67.9 \quad (C-5), 55.5 \quad (OCH_3), 18.1$ (CCH₃); ESI-MS: $m/z=468.1$ [M+NH₄]⁺; Anal. Calcd. for $C_{27}H_{30}O_6$ (450.20): C, 71.98; H, 6.71; found: C, 71.72; H, 6.96.

Ethyl 2-O-acetyl-4,6-O-benzylidene-3-O-(4-methoxybenzyl)-1-thio- β -D-glucopyranoside (5) To a solution of compound 4 (6.5 g, 20.8 mmol) in anhydrous $CH₃OH$ (150 ml) was added dibutyltin oxide (6.2 g, 24.9 mmol) and the reaction mixture was allowed to stir at 80°C for 2 h. The solvents were evaporated and co-evaporated with toluene $(3 \times 100$ ml) under reduced pressure. To a solution of the crude mass in dry DMF (50 ml) were added cesium fluoride (3.5 g, 23 mmol) and 4-methoxybenzylchloride (5.7 ml, 42 mmol) and the reaction mixture was allowed to stir at 80°C for 16 h. The reaction mixture was diluted with water (200 ml) and extracted with CH_2Cl_2 (150 ml). The organic layer was washed with aq. $NaHCO₃$ and water in succession, dried (Na_2SO_4) and evaporated to dryness. The crude product was conventionally acetylated using acetic anhydride (15 ml) and pyridine (15 ml) to give compound 5, which was purified over $SiO₂$ using hexane– EtOAc $(3:1)$ as eluant to give pure compound 5 (7.1 g) , 72%); colorless solid; m.p. 84°C; $[\alpha]_D^{25}$ -26.7 (c 1.5, CHCl3); IR (KBr): 2,926, 2,367, 1,745, 1,649, 1,516, 1,461, 1,378, 1,236, 1,093, 1,031, 757, 693 cm⁻¹; ¹H NMR (300 MHz, CDCl3): δ 7.51–7.18 (m, 5 H, Ar-H), 7.20 (d, J=8.6 Hz, 2 H, Ar-H), 6.83 (d, J=8.6 Hz, 2 H, Ar-H), 5.58 (s, 1 H, PhCH), 5.02 (dd, J=10.0 and 8.6 Hz, 1 H, H-2), 4.80 (d, $J=11.7$ Hz, 1 H, PhC H_2), 4.62 (d, $J=$ 11.7 Hz, 1 H, PhC H_2), 4.43 (d, J=10.1 Hz, 1 H, H-1), 4.38 (dd, $J=10.5$ and 5.0 Hz, 1 H, H-4), 3.81 (s, 3 H, OCH₃), 3.78–3.70 (m, 3 H, H-3, H-6ab), 3.51–3.48 (m, 1 H, H-5), 2.71 (ddd, $J=9.9$, 7.4 and 2.5 Hz, 2 H, SCH_2CH_3), 2.03 (s, 3 H, OCOCH₃), 1.27 (t, J=7.5 Hz, 3 H, SCH₂CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 169.1 (COCH₃), 159.2 (Ar-C), 137.2–113.6 (Ar-C), 101.1 (PhCH), 84.0 (C-1), 81.5 (C-3), 79.0 (C-5), 73.8 (MeOPhCH₂), 71.1 (C-2), 70.6 (C-4), 68.5 $(C-6)$, 55.1 (OCH₃), 23.6 (SCH₂CH₃), 20.8 (COCH₃), 14.7 (SCH₂CH₃); ESI-MS: $m/z=497.2$ [M+Na]⁺; Anal. Calcd. for $C_{25}H_{30}O_{7}S$ (474.17): C, 63.27; H, 6.37; found: C, 63.06; H, 6.60.

Ethyl 2-O-acetyl-4-O-benzyl-3-O-(4-methoxybenzyl)-1-thio- α -L-rhamnopyranoside (7) To a solution of compound 6 (7.5 g, mmol) in toluene (200 ml) was added dibutyltin oxide (7.5 g, 30.1 mmol) and the reaction mixture was allowed to stir at 110°C with azeotropic removal of water for 4 h. The solvents were reduced to half of the volume and 4-methoxybenzyl chloride (7 ml, 51.6 mmol) was added to it and the reaction mixture was stirred at 80°C for 16 h. The solvents were removed under reduced pressure and crude product was diluted with CH_2Cl_2 (150 ml). The organic layer was washed with 1 N aq. HCl, satd. NaHCO₃ and water in succession, dried (Na_2SO_4) and concentrated under reduced pressure. The crude product was conventionally acetylated using acetic anhydride (15 ml) and pyridine (20 ml) at room temperature. The solvents were removed under reduced pressure to give the crude product, which was purified over $SiO₂$ using hexane–EtOAc (5:1) as eluant to furnish pure compound 7 (8.6 g, 75%); colorless oil; $[\alpha]_{D}^{25}$ –66.6 (c 1.5, CHCl₃); IR (neat): 2,928, 2,380, 1,743, 1,612, 1,513, 1,455, 1,370, 1,238, 1,102, 1,040, 828, 746 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.33–7.28 (m, 5 H, Ar-H), 7.20 (d, J=8.5 Hz, 2 H, Ar-H), 6.80 (d, J= 8.5 Hz, 2 H, Ar-H), 5.41 (t, J=1.4 Hz, 1 H, H-2), 5.16 (brs, 1 H, H-1), 4.87 (d, $J=10.9$ Hz, 1 H, PhCH₂), 4.56 (dd, $J=$ 10.8 and 4.4 Hz, 2 H, MeOPhC H_2), 4.40 (d, J=10.9 Hz, 1 H, PhCH₂), 4.10–4.00 (m, 1 H, H-5), 3.82 (dd, $J=9.3$ and 3.1 Hz, 1 H, H-3), 3.75 (s, 3 H, OCH3), 3.41 (t, J=9.4 Hz, 1 H, H-4), 2.64–2.47 (m, 2 H, SCH2CH3), 2.12 (s, 3 H, OCOCH₃), 1.29 (d, J=6.2 Hz, 3 H, CCH₃), 1.24 (t, J= 7.4 Hz, SCH_2CH_3); ¹³C NMR (75 MHz, CDCl₃): δ 170.2 (COCH3), 159.2 (Ar-C), 138.4 (Ar-C), 129.8 (3 C, Ar-C), 128.2 (2 C, Ar-C), 127.7 (2 C, Ar-C), 127.5 (Ar-C), 113.7 (2 C, Ar-C), 82.2 (C-1), 80.1 (C-4), 77.9 (C-2), 75.2 $(MeOPhCH₂), 71.3 (PhCH₂), 70.8 (C-3), 68.2 (C-5), 55.1$ (OCH₃), 25.4 (SCH₂CH₃), 21.0 (COCH₃), 17.8 (CCH₃), 14.8 (SCH₂CH₃); ESI-MS: $m/z=499.2$ [M+K]⁺; Anal. Calcd. for $C_{25}H_{32}O_6S$ (460.19): C, 65.19; H, 7.00; found: C, 65.0; H, 7.26.

Ethyl 4-O-benzyl-3-O-(4-methoxybenzyl)-2-O-methyl-1 thio- α -L-rhamnopyranoside (8) To a solution of ethyl y44-O-benzyl-3-O-(4-methoxybenzyl)-1-thio-α-L-rhamnopyranoside (5 g, 11.9 mmol) (prepared from compound 6 following similar reaction conditions as described in the preparation of compound 7), in dry DMF (20 ml) were added crushed NaOH (1.5 g, 37.5 mmol) and iodomethane (3 ml, 48.2 mmol) and Bu₄NBr (100 mg) at 0° C and the reaction mixture was allowed to stir at 5°C for 3 h. The reaction mixture was diluted with water and extracted with $CH₂Cl₂$ (150 ml). The organic layer was washed with water, dried (Na_2SO_4) and evaporated to dryness to give the crude product, which was purified over $SiO₂$ using hexane– EtOAc $(7:1)$ as eluant to furnish pure compound 8 $(4.4 g,$ 86%); colorless oil; $[\alpha]_D^{25}$ -126.6 (c 1.5, CHCl₃); IR (neat): 2,364, 1,590, 1,351, 1,083, 769, 669 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.32–7.28 (m, 5 H, Ar-H), 7.23 (d, J= 8.5 Hz, 2 H, Ar-H), 6.80 (d, J=8.6 Hz, 2 H, Ar-H), 5.24 (brs, 1 H, H-1), 4.88 (d, $J=11.0$ Hz, 1 H, PhC $H₂$), 4.57 (brs, 2 H, MeOPhC H_2), 4.53 (d, J=11.0 Hz, 1 H, PhC H_2), 3.95 $(dd, J=9.3$ and 6.2 Hz, 1 H, H-2), 3.77 (s, 3 H, OCH₃), 3.72 $(dd, J=9.4$ and 3.1 Hz, 1 H, H-3), 3.51–3.41 (m, 2 H, H-4, H-5), 3.45 (s, 3 H, OCH₃), 2.64–2.55 (m, 2 H, SCH₂CH₃), 1.27 (t, J=7.5 Hz, 3 H, SCH₂CH₃); ¹³C NMR (75 MHz, CDCl3): δ 159.3 (Ar-C), 138.7 (Ar-C), 130.3 (Ar-C), 129.6 (2 C, Ar-C), 128.2 (2 C, Ar-C), 127.8 (2 C, Ar-C), 127.5 (Ar-C), 113.8 (2 C, Ar-C), 81.2 (C-1), 80.5 (C-4), 79.8 (2 C, C-2, C-3), 75.3 (MeOPhCH₂), 71.9 (PhCH₂), 68.3 (C-5), 58.5 (OCH₃), 55.1 (OCH₃), 25.3 (SCH₂CH₃), 17.8 (CCH₃), 15.0 (SCH₂CH₃); ESI-MS: $m/z = 471.2$ [M+K]⁺; Anal. Calcd. for $C_{24}H_{32}O_5S$ (432.20): C, 66.64; H, 7.46; found: C, 66.48; H, 7.62.

Ethyl 4-O-acetyl-3-O-benzyl-2-O-methyl-1-thio-β-L-fuco*pyranoside* (10) A solution of compound $9(2 \text{ g}, 7.6 \text{ mmol})$ in 80% aq. acetic acid (50 ml) was allowed to stir at 80°C for 1.5 h. The solvents were removed under reduced pressure to give the diol derivative. To a solution of the diol derivative in dry toluene (100 ml) was added dibutyltin oxide (2.3 g, 9.2 mmol) and the reaction mixture was allowed to stir at 110°C for 4 h with azeotropic removal of water. The solvents were reduced by distillation. To the reaction mixture were added Bu_4 NBr (500 mg) and benzyl bromide (2.7 ml, 22.7 mmol) and the reaction mixture was allowed to stir at 80°C for 12 h. The solvents were removed under reduced pressure and the crude mass was dissolved in $CH₂Cl₂$ (100 ml). The organic layer was washed with 1 N aq. HCl, satd. aq. NaHCO₃ and water, dried (Na_2SO_4) and concentrated to give the crude product, which was conventionally acetylated using acetic anhydride (5 ml) and pyridine (5 ml) at room temperature. The solvents were removed under reduced pressure to give the crude product, which was purified over $SiO₂$ using hexane–EtOAc (6:1) to furnish pure compound 10 (2 g, 74%); colorless oil; $[\alpha]_D^{25}$ -10.2 (c 1.5, CHCl₃); IR (neat): 2,364, 1,740, 1,453, 1,374, 1,237, 1,127, 1,099, 1,020, 987, 744, 699 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.32–7.25 (m, 5 H, Ar-H), 5.30 (d, J= 2.8 Hz, 1 H, H-4), 4.69 (d, $J=11.4$ Hz, 1 H, PhC H_2), 4.51 $(d, J=11.4 \text{ Hz}, 1 \text{ H}, \text{PhCH}_2)$, 4.28 $(d, J=9.7 \text{ Hz}, 1 \text{ H}, \text{H-1})$, 3.61–3.59 (m, 1 H, H-5), 3.58 (s, 3 H, OCH₃), 3.46 (dd, $J=$ 9.1 and 3.5 Hz, 1 H, H-3), 3.23 (t, J=9.4 Hz, 1 H, H-2), 2.72 (ddd, $J=12.1$, 7.5 and 4.6 Hz, 2 H, SCH₂CH₃), 2.15 $(s, 3$ H, COCH₃), 1.30 (t, J=7.5 Hz, 3 H, SCH₂CH₃), 1.18 (d, J=6.4 Hz, 3 H, CCH₃); ¹³C NMR (75 MHz, CDCl₃): δ 170.6 (COCH3), 137.8 (Ar-C), 128.3 (2 C, Ar-C), 127.8 (2 C, Ar-C), 127.6 (Ar-C), 84.8 (C-1), 80.8 (C-4), 79.4 (C-3), 72.8 (C-2), 71.7 (PhCH₂), 69.8 (C-5), 61.2 (OCH₃), 24.7 (SCH_2CH_3) , 20.8 $(COCH_3)$, 16.7 (CCH_3) , 14.9 (SCH₂CH₃); ESI-MS: $m/z=393.1$ [M+K]⁺; Anal. Calcd. for $C_{18}H_{26}O_5S$ (354.15): C, 60.99; H, 7.39; found: C, 60.76; H, 7.65.

4-Methoxyphenyl [2-O-acetyl-4,6-O-benzylidine-3-O-(4 methoxybenzyl)-β-D-glucopyranosyl]-(1→3)-2,4-di-O-benzyl- α -L-rhamnopyranoside (12) To a solution of compound 3 (5 g, 11.1 mmol) and compound 5 (6.32 g, 13.3 mmol) in dry CH_2Cl_2 (70 ml) was added MS 4 Å (4 g) and the mixture was stirred at room temperature for 20 min under argon. The reaction mixture was cooled to −40°C and Niodosuccinimide (3.6 g, 16 mmol) and TMSOTf (90 μ l, 0.48 mmol) were added to it. After stirring the reaction mixture at same temperature for 30 min, $Et₃N$ (0.5 ml) was added to it. The reaction mixture was diluted with CH_2Cl_2 (40 ml), filtered and washed with aq. $Na₂S₂O₃$ and water. The organic layer was dried (Na_2SO_4) and concentrated under reduced pressure to give the crude product, which was purified over $SiO₂$ using hexane–EtOAc (5:1) as eluant to furnish pure 12 (7.8 g, 81%); colorless solid; m.p. 62° C; $[\alpha]_{D}^{25}$ –52.2 (c 1.5, CHCl₃); IR (KBr): 2,368, 1,750, 1,610, 1,508, 1,457, 1,375, 1,228, 1,095, 826, 745, 698 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.46–7.23 (m, 15 H, Ar-H), 7.15 (d, J=8.3 Hz, 2 H, Ar-H), 6.87 (d, J=9.0 Hz, 2 H, Ar-H), 6.78 (d, J=8.0 Hz, 2 H, Ar-H), 6.73 (d, J=8.5 Hz, 2 H, Ar-H), 5.52 (s, 1 H, PhCH), 5.22 (brs, 1 H, H-1_A), 5.09 (t, J= 8.2 Hz, 1 H, H-2_B), 4.88–4.86 (m, 1 H, PhCH₂), 4.81 (d, $J=11.4$ Hz, 1 H, PhC H_2), 4.77 (d, $J=9.8$ Hz, 1 H, H- 1_B), 4.74 (d, $J=11.0$ Hz, 1 H, PhC H_2), 4.70 (d, $J=12.1$ Hz, 1 H, PhCH₂), 4.58 (d, J=11.7 Hz, 1 H, PhCH₂), 4.52 (d, J= 11.0 Hz, 1 H, PhC H_2), 4.29 (dd, J=10.2 and 4.8 Hz, 1 H, H-4_B), 4.16 (dd, $J=9.5$ and 2.6 Hz, 1 H, H-2_A), 3.93–3.86 $(m, 1 H, H-5_A), 3.76$ (s, 3 H, OCH₃), 3.74 (s, 3 H, OCH₃), 3.73–3.52 (m, 5 H, H-3_A, H-3_B, H-4_A and H-6_{abB}), 3.46– 3.35 (m, 1 H, H-5_B), 1.78 (s, 3 H, COCH₃), 1.21 (d, J= 6.1 Hz, 3 H, CCH₃); ¹³C NMR (75 MHz, CDCl₃): δ 169.2 $(COCH₃), 159.2-113.7$ (Ar-C), 102.1 (C-1_B), 101.2 (PhCH), 97.4 (C-1_A), 81.6 (C-4_A), 80.2 (C-3_B), 79.3 (C-2_A), 78.1 (C-3_A), 77.7 (C-5_A), 74.9 (PhCH₂), 73.7 (PhCH₂), 73.5 (PhCH₂), 73.2 (C-2_B), 68.6 (2 C, C-4_B) and C-6_B), 66.1 (C-5_B), 55.6 (OCH₃), 55.2 (OCH₃), 20.8 (COCH₃), 17.8 (CCH₃); ESI-MS: $m/z = 880.5$ [M+NH₄]⁺; Anal. Calcd. for $C_{50}H_{54}O_{13}$ (862.36): C, 69.59; H, 6.31; found: C, 69.42; H, 6.50.

4-Methoxyphenyl [2-O-benzyl-4,6-O-benzylidine-3-O-(4 methoxybenzyl)-β-D-glucopyranosyl]-(1→3)-2,4-di-O-ben zyl - α -L-rhamnopyranoside (13) To a solution of compound 12 (7.4 g, 8.6 mmol) in THF (50 ml), were added crushed NaOH (1 g, 25 mmol), benzyl bromide (2 ml, 16.8 mmol) and $Bu₄NBr$ (200 mg) and the reaction mixture was allowed to stir vigorously at room temperature for 3 h. The reaction mixture was diluted with water (150 ml), and extracted with CH_2Cl_2 (150 ml). The organic layer was washed with water, dried (Na_2SO_4) and concentrated under reduced pressure to give the crude product, which was purified over $SiO₂$ using hexane–EtOAc (7:1) as eluant to give pure 13 (6.5 g, 84%); colorless solid; m.p. 54° C; $[\alpha]_{D}^{25}$ –46.8 (c 1.5, CHCl₃); IR (KBr): 2,368, 1,611, 1,507,

1,457, 1,372, 1,220, 1,174, 1,088, 1,034, 1,000, 825, 748, 698 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.49-7.12 (m, 22 H, Ar-H), 6.91–6.88 (m, 2 H, Ar-H), 6.80–6.75 (m, 4 H, Ar-H), 5.55 (s, 1 H, PhCH), 5.30 (d, $J=1.4$ Hz, 1 H, H-1_A), 5.00 (d, $J=11.3$ Hz, 1 H, PhC H_2), 4.94 (d, $J=7.7$ Hz, 1 H, H-1_B), 4.90–4.68 (m, 6 H, 3 PhC H_2 and MeOPhC H_2), 4.39 (d, $J=10.7$ Hz, 1 H, PhCH₂), 4.36–4.27 (m, 2 H, H-2_A and H-4_B), 3.96–3.95 (m, 1 H, H-5_A), 3.87–3.61 (m, 5 H, H-3_A, $H-3_B$, $H-4_A$, and $H-6_{ab}$, 3.76 (s, 3 H, OCH₃), 3.74 (s, 3 H, OCH₃), 3.47 (t, J=7.8 Hz, 1 H, H-2_B), 3.42–3.32 (m, 1 H, H-5_B), 1.28 (d, J=6.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 159.2–113.7 (Ar-C), 103.9 (C-1_B), 101.2 (PhCH), 97.4 (C-1_A), 82.6 (C-4_A), 82.0 (C-3_B), 81.3 (C-2_A), 80.5 (C-3_A), 78.4 (C-5_A), 77.6 (C-2_B), 75.5 (PhCH₂), 74.7 (2 PhCH₂), 73.6 (PhCH₂), 68.9 (C-6_B), 68.6 (C-4_B), 66.0 (C-5_B), 55.5 (OCH₃), 55.1 (OCH₃), 18.1 (CCH₃); ESI-MS: $m/z = 933.7$ [M+Na]⁺; Anal. Calcd. for $C_{55}H_{58}O_{12}$ (910.39): C, 72.51; H, 6.42; found: C, 72.28; H, 6.60.

4-Methoxyphenyl (2-O-benzyl-4,6-O-benzylidine-β-D-glu $copyranosyl$ - $(1\rightarrow 3)$ -2,4-di-O-benzyl- α -L-rhamnopyranoside (14) To a solution of compound 13 $(6.3 \text{ g}, 6.9 \text{ mmol})$ in CH_2Cl_2 and water (60 ml, 1:1), was added DDQ (1.9 g, 8.3 mmol) and the reaction mixture was allowed to stir at room temperature for 2 h. The reaction mixture was diluted with CH_2Cl_2 (50 ml) and the organic layer was washed successively with satd. aq $NAHCO₃$ and water. The organic layer was dried (Na_2SO_4) and concentrated under reduced pressure to give the crude product, which was purified over $SiO₂$ using hexane–EtOAc (4:1) as eluant to furnish pure **14** (4.7 g, 86%); colorless solid; m.p. 64°C; $[\alpha]_D^2$ ⁵ –50.4 (c 1.5, CHCl3); IR (KBr): 2,371, 1,601, 1,505, 1,456, 1,380, 1,219, 1,086, 1,031, 741, 697 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.54–7.12 (m, 20 H, Ar-H), 6.90 (d, J=9.0 Hz, 2 H, Ar-H), 6.77 (d, J=9.0 Hz, 2 H, Ar-H), 5.49 (s, 1 H, PhCH), 5.30 (brs, 1 H, H-1_A), 5.08–4.75 (m, 6 H, H-1_B, and PhC H_2), 4.48 (d, J=10.5 Hz, 1 H, PhC H_2), 4.35–4.26 $(m, 2 H, H-2_A$ and H-4_B), 4.00–3.92 (m, 1 H, H-5_A), 3.88– 3.62 (m, 4 H, H-3_A, H-3_B and H-6_{abB}), 3.75 (s, 3 H, OCH₃), 3.49 (t, J=9.2 Hz, 1 H, H-4_A), 3.45–3.33 (m, 2 H, H-2_B and H-5_B), 1.31 (d, J=5.9 Hz, 3 H, CCH₃); ¹³C NMR (75 MHz, CDCl₃): δ 154.9–114.6 (Ar-C), 103.8 (C-1_B), 101.8 (PhCH), 97.3 (C-1_A), 82.2 (C-4_A), 81.2 (C-3_B), 80.8 $(C-2_A)$, 78.5 $(C-3_A)$, 77.7 $(C-5_A)$, 75.0 $(PhCH_2)$, 74.7 (PhCH₂), 73.6 (PhCH₂), 73.4 (C-2_B), 68.8 (C-6_B), 68.6 (C-4_B), 66.1 (C-5_B), 55.5 (OCH₃), 18.1 (CCH₃); ESI-MS: $m/z=$ 808.2 [M+NH₄]⁺; Anal. Calcd. for C₄₇H₅₀O₁₁ (790.34): C, 71.38; H, 6.37; found: C, 71.20; H, 6.55.

4-Methoxyphenyl [2-O-acetyl-4-O-benzyl-3-O-(4-methoxybenzyl)- α -L-rhamnopyranosyl]-(1→3)-(2-O-benzyl-4,6-Obenzylidine- β -D-glucopyranosyl)-(1→3)-2,4-di-O-benzyl- α -L-rhamnopyranoside (15) To a solution of compound 14 (4.4 g, 5.5 mmol) and compound 7 (3.1 g, 6.7 mmol) in dry CH_2Cl_2 (40 ml) was added MS 4 Å (3.5 g) and the reaction mixture was allowed to stir at room temperature for 20 min under argon. After cooling the reaction mixture to −40°C, N-iodosuccinimide (1.8 g, 8.0 mmol) and TMSOTf (45 μl, 0.24 mmol) were added to it. The reaction mixture was stirred at -40° C for 30 min and quenched with Et₃N (0.2 ml). The reaction mixture was filtered and washed with $CH₂Cl₂$ (30 ml). The organic layer was washed successively with aq. $Na₂S₂O₃$ and water, dried $(Na₂SO₄)$ and concentrated under reduced pressure to give the crude product, which was purified over $SiO₂$ using hexane– EtOAc $(6:1)$ as eluant to furnish pure 15 $(5.6 \text{ g}, 85\%);$ colorless solid; m.p. 58°C; $[\alpha]_D^{25}$ –43.5 (c 1.5, CHCl₃); IR (KBr): 2,932, 2,364, 1,743, 1,594, 1,509, 1,457, 1,370, 1,240, 1,092, 826, 745, 697 cm⁻¹; ¹H NMR (300 MHz, CDCl3): δ 7.51–7.14 (m, 27 H, Ar-H), 6.93–6.89 (m, 2 H, Ar-H), 6.82–6.76 (m, 4 H, Ar-H), 5.50 (s, 1 H, PhCH), 5.46 (dd, $J=3.3$ Hz and 1.7 Hz, 1 H, H-2_C), 5.33 (d, $J=1.7$ Hz, 1 H, H-1_A), 5.21 (d, J=1.1 Hz, 1 H, H-1_C), 5.08 (d, J= 11.0 Hz, 1 H, PhCH₂), 4.98 (d, J=7.8 Hz, 1 H, H-1_B), 4.92 (d, $J=12.0$ Hz, 1 H, PhC H_2), 4.85–4.71 (m, 4 H, PhC H_2), 4.64 (d, $J=10.4$ Hz, 1 H, PhC H_2), 4.50 (d, $J=11.0$ Hz, 1 H, PhCH₂), 4.46–4.28 (m, 4 H, H-2_A and H-4_B, MeOPhCH₂), 4.12 (dd, $J=9.2$ and 3.1 Hz, 1 H, H-5_C), 4.00–3.96 (m, 1 H, H-5_A), 3.95–3.82 (m, 3 H, H-3_C and H-6_{abB}), 3.76 (s, 3 H, OCH₃), 3.75 (s, 3 H, OCH₃), 3.73–3.67 (m, 2 H, H-3_A and H-3_B), 3.52 (2 t, J=9.0 Hz, 2 H, H-2_B and H-4_A), 3.46– 3.35 (m, 1 H, H-5_B), 3.29 (t, J=9.4 Hz, 1 H, H-4_C), 2.03 (s, 3 H, COCH₃), 1.30 (d, J=6.1 Hz, 3 H, CCH₃), 0.94 (d, J= 6.1 Hz, 3 H, CCH₃); ¹³C NMR (75 MHz, CDCl₃): δ 169.9 $(COCH_3)$, 159.2–113.7 (Ar-C), 103.7 (C-1_B), 101.6 (PhCH), 98.4 (C-1_C), 97.3 (C-1_A), 83.4 (C-4_A), 81.4 (C-3_A), 80.1 (C-2_B), 79.5 (C-3_B), 78.3 (C-3_C), 77.9 (C-5_A), 77.0 (C-4_C), 76.5 (C-4_B), 75.3 (PhCH₂), 74.9 (PhCH₂), 74.6 (PhCH₂), 73.6 (PhCH₂), 71.4 (PhCH₂), 68.7 (2 C, C- 6_B and C-2_C), 68.6 (C-2_A), 67.6 (C-5_C), 66.3 (C-5_B), 55.6 (OCH3), 55.1 (OCH3), 20.9 (COCH3), 18.0 (CCH3), 17.4 (CCH₃); ESI-MS: $m/z=1,211.5$ [M+Na]⁺; Anal. Calcd. for $C_{70}H_{76}O_{17}$ (1,188.51): C, 70.69; H, 6.44; found: C, 70.51; H, 6.60.

4-Methoxyphenyl [4-O-benzyl-3-O-(4-methoxybenzyl)-α-Lrhamnopyranosyl]-(1→3)-(2-O-benzyl-4,6-O-benzylidene-β-Dglucopyranosyl)-(1→3)-2,4-di-O-benzyl-α-L-rhamnopyranoside (16) A solution of compound 15 $(5.40 \text{ g}, 4.54 \text{ mmol})$ in 0.1 M CH₃ONa in MeOH:CH₂Cl₂ (70 ml, 4:1) was allowed to stir at room temperature for 3 h and neutralized with Amberlite IR-120 $(H⁺)$. The reaction mixture was filtered, washed with CH3OH and the filtrate was evaporated to dryness to give crude product, which was purified over $SiO₂$ using hexane–EtOAc (4:1) as eluant to furnish pure 16 (5.2 g, quantitative); colorless solid; m.p.

63°C; $[\alpha]_D^{25}$ –68.1 (c 1.5, CHCl₃); IR (KBr): 2,932, 2,364, 2,340, 1,592, 1,509, 1,457, 1,383, 1,353, 1,248, 1,219, 1,096, 1,033, 749, 697 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.49–7.12 (m, 27 H, Ar-H), 6.93–6.88 (m, 2 H, Ar-H), 6.86– 6.76 (m, 4 H, Ar-H), 5.46 (s, 1 H, PhCH), 5.32 (d, $J=1.7$ Hz, 1 H, H-1_A), 5.23 (brs, 1 H, H-1_C), 5.03 (d, J=11.2 Hz, 1 H, PhCH₂), 4.95 (d, J=7.6 Hz, 1 H, H-1_B), 4.92 (d, J=10.8 Hz, 1 H, PhC H_2), 4.88–4.69 (m, 4 H, PhC H_2), 4.56–4.48 (m, 3 H, PhCH₂, MeOPhCH₂), 4.40 (d, J=10.4 Hz, 1 H, PhCH₂), 4.38–4.26 (m, 2 H, H-2_A and H-4_B), 4.07–3.95 (m, 2 H, H- 5_A , H-5_C), 3.92–3.80 (m, 2 H, H-3_C and H-6_{aB}), 3.78–3.64 (m, 4 H, H-2_C, H-3_A, H-3_B, and H-6_{bB}), 3.75 (s, 3 H, OCH₃), 3.74 (s, 3 H, OCH₃), 3.52–3.28 (m, 4 H, H-2_B, H- 4_A , H- 4_C and H- 5_B), 1.30 (d, J=6.2 Hz, 3 H, CCH₃), 0.87 (d, J=6.2 Hz, 3 H, CCH₃); ¹³C NMR (75 MHz, CDCl₃): δ 159.3–113.8 (Ar-C), 103.8 (C-1_B), 101.6 (PhCH), 100.0 (C- 1_c , 97.2 (C-1_A), 83.2 (C-4_A), 81.4 (C-3_A), 80.1 (C-2_B), 79.6 (2 C, C-3_B and C-5_A), 78.3 (C-3_C), 77.1 (C-4_B), 76.9 (C-4_C), 75.3 (PhCH2), 74.9 (PhCH2), 74.6 (PhCH2), 73.6 (PhCH2), 71.6 (PhCH₂), 68.7 (C-6_B), 68.5 (2 C, C-2_A and C-2_C), 67.2 $(C-5_C)$, 66.3 $(C-5_B)$, 55.5 $(OCH₃)$, 55.1 $(OCH₃)$, 17.9 (CCH₃), 17.3 (CCH₃); ESI-MS: $m/z=1,164.8$ [M+NH₄]⁺; Anal. Calcd. for $C_{68}H_{74}O_{16}$ (1,146.5): C, 71.19; H, 6.50; found: C, 71.0; H, 6.74.

4-Methoxyphenyl (2,3,4-tri-O-acetyl-β-D-xylopyranosyl)- $(1\rightarrow 2)$ -[4-O-benzyl-3-O-(4-methoxybenzyl)- α -L-rhamnopyranosyl]-(1→3)-(2-O-benzyl-4,6-O-benzylidene-β-D-glucopyranosyl)- $(1\rightarrow 3)$ -2,4-di-O-benzyl- α -L-rhamnopyranoside (17) To a solution of compound 16 (5 g, 4.36 mmol) and compound 11 (1.7 g, 5.23 mmol) in dry CH_2Cl_2 (50 ml) was added MS 4 Å (3.5 g) and the reaction mixture was allowed to stir at room temperature for 20 min under argon. The reaction mixture was cooled to −40°C and Niodosuccinimide (1.4 g, 6.3 mmol) and TMSOTf (35 μ l, 0.2 mmol) were added to it. The reaction mixture was stirred at -40° C for 30 min and quenched with Et₃N (0.2 ml). The reaction mixture was filtered and washed with $CH₂Cl₂$ (100 ml). The organic layer was washed successively with 10% Na₂S₂O₃ and water, dried (Na₂SO₄) and concentrated under reduced pressure to give crude product, which was purified over $SiO₂$ using hexane–EtOAc (5:1) as eluant to furnish pure 17 (5 g, 82%). colorless solid; m.p. 68°C; $[\alpha]_D^{25}$ –49.5 (c 1.5, CHCl₃); IR (KBr): 2,931, 2,362, 2,339, 1,754, 1,592, 1,510, 1,458, 1,354, 1,223, 1,097, 1,037, 738, 697 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.50–7.10 (m, 27 H, Ar-H), 6.91 (d, J=9.1 Hz, 2 H, Ar-H), 6.84 (d, J=8.7 Hz, 2 H, Ar-H), 6.79 (d, J=9.2 Hz, 2 H, Ar-H), 5.48 (s, 1 H, PhCH), 5.32 (d, $J=1.7$ Hz, 1 H, H-1_A), 5.26 (d, $J=1.2$ Hz, 1 H, $H-I_C$), 5.06 (t, $J=8.9$ Hz, 1 H, H-3_D), 4.99 (d, J=7.5 Hz, 1 H, H-1_B), 4.98–4.87 (m, 3 H, $H-2_D$, $H-4_D$ and PhC H_2), 4.85–4.59 (m, 5 H, PhC H_2), 4.58–4.45 (m, 3 H, PhC H_2), 4.50 (d, J=7.7 Hz, 1 H, H-1_D), 4.39–4.25 (m, 3 H, H-2_A, H-4_B and PhC H_2), 4.05–3.94 (m, 2 H, H-5_A and H-5_C), 3.93–3.79 (m, 4 H, H-3_C, H-5_{abD} and H-6_{aB}), 3.76 (brs, 6 H, 2 OCH₃), 3.73–3.57 (m, 2 H, H-3_B and H-6_{bB}), 3.54–3.36 (m, 4 H, H-3_A, H-4_A, H-4_C and H-5_B), 3.29 (t, $J=9.5$ Hz, 1 H, H-2_B), 2.84 (dd, $J=11.9$ and 8.5 Hz, 1 H, H-2_C), 2.01 (s, 3 H, COCH₃), 2.00 (s, 3 H, COCH₃), 1.83 (s, 3 H, COCH₃), 1.26 (d, J=6.1 Hz, 3 H, CCH₃), 0.87 (d, J=6.2 Hz, 3 H, CCH₃); ¹³C NMR (75 MHz, CDCl₃): δ 170.0, 169.4, 169.2 (3 COCH₃), 159.1–113.6 (Ar-C), 103.7 (C-1_B), 101.9 (C-1_D), 101.6 (PhCH), 99.6 (C-1_C), 97.2 (C-1_A), 83.1 (C-4_A), 81.3 (C- 3_A), 80.5 (C-2_B), 79.7 (C-3_B), 79.4 (C-5_A), 78.3 (C-3_C), 76.9 (C-4_C), 76.8 (C-4_B), 76.7 (C-4_D), 75.0 (PhCH₂), 74.7 $(PhCH₂), 74.5 (PhCH₂), 73.5 (PhCH₂), 72.1 (PhCH₂), 71.0$ $(C-3_D)$, 70.6 $(C-2_D)$, 68.9 $(C-2_C)$, 68.7 $(C-6_B)$, 68.4 $(C-2_A)$, 67.8 (C-5_C), 66.2 (C-5_B), 61.3 (C-5_D), 55.5 (OCH₃), 55.1 (OCH₃), 20.6 (2 C, 2 COCH₃), 20.5 (COCH₃), 17.9 (CCH₃), 17.3 (CCH₃); ESI-MS: $m/z=1,424.1$ [M+NH₄+1]⁺; Anal. Calcd. for $C_{79}H_{88}O_{23}$ (1,405.53): C, 67.51; H, 6.31; found: C, 67.34; H, 6.50.

4-Methoxyphenyl (2,3,4-tri-O-acetyl-β-D-xylopyranosyl)- (1→2)-(4-O-benzyl-α-L-rhamnopyranosyl)-(1→3)-(2-Obenzyl-4,6-O-benzylidine- β -D-glucopyranosyl)-(1→3)-2, 4-di-O-benzyl- α -L-rhamnopyranoside (18) To a solution of compound 17 (4.8 g, 3.4 mmol) in CH_2Cl_2 and water (50 ml, 1:1), was added DDQ (930 mg, 4.1 mmol) and the reaction mixture was allowed to stir at room temperature for 2 h. The reaction mixture was diluted with CH_2Cl_2 (50 ml) and the organic layer was washed successively with satd. aq NaHCO₃ and water, dried (Na₂SO₄) and concentrated under reduced pressure to give the crude product, which was purified over $SiO₂$ using hexane–EtOAc (4:1) to furnish pure 18 (3.8 g, 86%); colorless solid; m.p. 84° C; $[\alpha]_D^2$ ³⁵ −70.8 (c 1.5, CHCl3); IR (KBr): 2,930, 2,364, 2,251, 1,752, 1,593, 1,507, 1,456, 1,377, 1,223, 1,085, 737, 698 cm⁻¹;
¹H NMP (300 MHz, CDCl); $\frac{57.48 \times 715 \text{ (m)} - 25 \text{ H} - \text{Ar}}{21.5 \text{ (m)} - 25 \text{ H} - \text{Ar}}$ ¹H NMR (300 MHz, CDCl₃): δ 7.48–7.15 (m, 25 H, Ar-H), 6.91 (d, J=9.1 Hz, 2 H, Ar-H), 6.79 (d, J=9.1 Hz, 2 H, Ar-H), 5.46 (s, 1 H, PhCH), 5.32 (d, $J=1.7$ Hz, 1 H, H-1_A), 5.22 (brs, 1 H, H-1_C), 5.11 (d, $J=11.5$ Hz, 1 H, PhC H_2), 5.02 (t, $J=8.9$ Hz, 1 H, $H=3_D$), 4.98 (d, $J=8.4$ Hz, 1 H, H- 1_B), 4.91–4.81 (m, 3 H, H-2_D, H-4_D and PhC H_2), 4.80– 4.64 (m, 4 H, PhC H_2), 4.54 (d, J=11.1 Hz, 1 H, PhC H_2), 4.42–4.28 (m, 3 H, H-2_A, H-4_B and PhCH₂), 4.19 (d, J= 7.1 Hz, 1 H, H-1_D), 4.04–3.96 (m, 2 H, H-5_A and H-5_C), 3.95–3.80 (m, 3 H, H-5_{abD} and H-6_{aB}), 3.75 (s, 3 H, OCH₃), 3.74–3.52 (m, 4 H, H-3_A, H-3_B, H-3_C and H-6_{bB}), 3.51–3.36 (m, 3 H, H-4_A, H-4_C and H-5_B), 3.13 (t, J= 9.5 Hz, 1 H, H-2_B), 2.71 (dd, $J=11.9$ and 8.5 Hz, 1 H, H- $2c$), 2.04, 2.01, 1.99 (3 s, 9 H, 3 COCH₃), 1.26 (d, J= 5.3 Hz, 3 H, CCH₃), 0.85 (d, J=6.2 Hz, 3 H, CCH₃); ¹³C NMR (75 MHz, CDCl₃): δ 169.8, 169.7, 169.4 (3 COCH₃), 154.8–114.5 (Ar-C), 103.7 (C-1_B), 102.2 (C-1_D), 101.8 (PhCH), 99.1 (C-1_C), 97.3 (C-1_A), 83.5 (C-4_A), 82.0 (C- 3_A , 81.2 (C-2_B), 80.4 (C-3_B), 79.6 (C-5_A), 78.3 (C-4_C), 77.1 (C-4_B), 77.0 (C-4_D), 75.0 (PhCH₂), 74.5 (2 C, 2 PhCH₂), 73.5 (PhCH₂), 71.4 (C-3_D), 71.1 (C-2_D), 70.9 (C- $3c$), 68.7 (2 C, C-2_C and C-6_B), 68.4 (C-2_A), 67.1 (C-5_C), 66.3 (C-5_B), 61.6 (C-5_D), 55.5 (OCH₃), 20.6 (COCH₃), 20.5 (2 C, 2 COCH3), 17.9 (CCH3), 17.3 (CCH3); ESI-MS: $m/z=1,308.2$ [M+Na]⁺; Anal. Calcd. for C₇₁H₈₀O₂₂ (1,285.38): C, 66.34; H, 6.27; found: C, 66.18; H, 6.45.

4-Methoxyphenyl [4-O-benzyl-3-O-(4-methoxybenzyl)-2-Omethyl- α -L-rhamnopyranosyl]- $(1\rightarrow 3)$]- $(2,3,4$ -tri-O-acetylβ-D-xylopyranosyl)-(1→2)-4-O-benzyl-α-L-rhamnopyrano syl]-(1→3)-(2-O-benzyl-4,6-O-benzylidene- β -D-glucopyranosyl)- $(1\rightarrow 3)$ -2,4-di-O-benzyl- α -L-rhamnopyranoside (19) To a solution of compound 18 (3.5 g, 2.7 mmol) and compound $8(1.4 \text{ g}, 3.3 \text{ mmol})$ in dry CH₂Cl₂ (35 ml) was added MS 4 Å (3 g) and the reaction mixture was stirred at room temperature for 20 min under argon. The reaction mixture was cooled to −40°C and N-iodosuccinimide (880 mg, 3.9 mmol) and TMSOTf $(20 \mu l, 0.12 \mu)$ were added to it. The mixture was stirred at −40°C for 30 min and quenched with $Et₃N$ (0.1 ml). The reaction mixture was filtered and washed with $CH₂Cl₂$ (50 ml). The filtrate was successively washed with 10% aq $Na₂S₂O₃$ and water, dried (Na_2SO_4) and concentrated under reduced pressure to give crude product, which was purified over $SiO₂$ using hexane–EtOAc (4:1) as eluant to furnish pure 19 (3.8 g, 84%); colorless solid; m.p. 80°C; $[\alpha]_D^{25}$ -53.1 (c 1.5, CHCl3); IR (KBr): 2,937, 2,362, 1,755, 1,588, 1,509, 1,456, 1,371, 1,223, 1,078, 1,036, 737, 697 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.49–7.10 (m, 32 H, Ar-H), 6.91 (d, J=9.1 Hz, 2 H, Ar-H), 6.81 (d, J=8.6 Hz, 2 H, Ar-H), 6.79 (d, J=9.1 Hz, 2 H, Ar-H), 5.51 (s, 1 H, PhCH), 5.32 (d, J=1.7 Hz, 1 H, H-1_A), 5.26 (brs, 1 H, H-1_C), 5.12– 4.99 (m, 3 H, H-3_D, H-1_E and PhC H_2), 4.95 (d, J=7.7 Hz, 1 H, H-1_B), 4.95–4.91 (m, 2 H, H-2_D and H-4_D), 4.91–4.77 $(m, 3 H, PhCH₂), 4.73 (d, J=7.0 Hz, 1 H, H-1_D), 4.73–4.68$ $(m, 2 H, PhCH₂), 4.67–4.50 (m, 5 H, PhCH₂), 4.39–4.26$ (m, 3 H, H-2_A, H-4_B and PhC*H*₂), 4.11–4.00 (m, 2 H, H-2_E and H-5_E), 3.90–3.86 (m, 3 H, H-5_A, H-5_C and H-6_{aB}), 3.85–3.78 (m, 2 H, H-5_{abD}), 3.75 (s, 3 H, OCH₃), 3.74 (s, 3 H, OCH₃), 3.73–3.59 (m, 3 H, H-3_A, H-3_E and H-6_{bB}), 3.58–3.47 (m, 3 H, H-3_B, H-3_C and H-4_E), 3.46–3.35 (m, 3 H, H-4_A, H-4_C and H-5_B), 3.28 (t, J=9.5 Hz, 1 H, H-2_B), 3.18 (s, 3 H, OCH3), 2.97 (dd, J=11.9 and 8.5 Hz, 1 H, H-2_C), 2.02, 1.98, 1.95, (3 s, 9 H, 3 COCH₃), 1.30 (d, J= 6.2 Hz, 3 H, CCH₃), 1.27 (d, J=6.1 Hz, 3 H, CCH₃), 0.83 (d, J=6.1 Hz, 3 H, CCH₃); ¹³C NMR (75 MHz, CDCl₃): δ 169.7, 169.5, 168.9 (3 COCH3), 159.0–113.6 (Ar-C), 103.8 (C-1_B), 101.6 (PhCH), 100.5 (C-1_D), 99.5 (2 C, C-1_C and C-1_E), 97.2 (C-1_A), 82.7 (C-4_A), 81.2 (C-3_A), 80.8 (C-2_B), 80.2 (C-3_B), 79.5 (C-5_A), 79.4 (C-5_E), 78.1 (C-4_C), 78.0 (C-

4_E), 77.8 (C-4_B), 77.4 (C-4_D), 76.8 (C-3_C), 76.4 (C-3_E), 75.0 (PhCH₂), 74.6 (PhCH₂), 74.4 (PhCH₂), 74.3 (PhCH₂), 73.4 (PhCH₂), 72.0 (PhCH₂), 70.7 (C-3_D), 70.6 (C-2_D), 68.6 (C-6_B), 68.5 (C-2_E), 68.4 (C-2_C), 68.3 (C-2_A), 67.8 (C- $5c$), 66.2 (C-5_B), 61.0 (C-5_D), 58.8 (OCH₃), 55.4 (OCH₃), 55.0 (OCH3), 20.7 (COCH3), 20.6 (2 C, 2 COCH3), 18.2 (CCH₃), 17.9 (CCH₃), 17.2 (CCH₃); ESI-MS: $m/z=1,673.8$ [M+NH₄]⁺; Anal. Calcd. for C₉₃H₁₀₆O₂₇ (1,655.82): C, 67.46; H, 6.45; found: C, 67.29; H, 6.67.

4-Methoxyphenyl (4-O-benzyl-2-O-methyl-α-L-rhamnopyr $ansyl$)- $(1\rightarrow 3)$ [(2,3,4-tri-O-acetyl- β -D-xylopyranosyl)-(1→2)-4-O-benzyl-α-L-rhamnopyranosyl]-(1→3)-(2-Obenzyl-4,6-O-benzylidine- β -D-glucopyranosyl)- $(1\rightarrow 3)$ -2,4 $di-O-benzyl-\alpha-L-rhamnopy ranoside$ (20) To a solution of compound 19 (3.5 g, 2.14 mmol) in $CH₂Cl₂$ and water (40 ml, 1:1), was added DDQ (590 mg, 2.6 mmol) and the reaction mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with $CH₂Cl₂$ (30 ml) and the organic layer was washed in succession with satd. aq $NaHCO₃$ and water, dried (Na₂SO₄) and concentrated under reduced pressure to give the crude product, which was purified over $SiO₂$ using hexane–EtOAc (3:1) as eluant to furnish pure 20 (2.9 g, 88%); colorless solid; m.p. 83 $^{\circ}$ C; $[\alpha]_{D}^{25}$ –65.7 (c 1.5, CHCl₃); IR (KBr): 2,936, 2,363, 1,756, 1,590, 1,508, 1,381, 1,353, 1,224, 1,094, 1,042, 752, 698 cm−¹ ; 1 H NMR (300 MHz, CDCl3): δ 7.49–7.08 (m, 30 H, Ar-H), 6.90 (d, J=9.1 Hz, 2 H, Ar-H), 6.77 (d, J= 9.1 Hz, 2 H, Ar-H), 5.51 (s, 1 H, PhCH), 5.30 (d, J=1.6 Hz, 1 H, H-1_A), 5.24 (brs, 1 H, H-1_C), 5.08 (brs, 1 H, H-1_E), 5.03 (t, $J=8.2$ Hz, 1 H, $H=3_D$), 5.02–4.98 (m, 1 H, PhC $H₂$), 4.96 (d, J=7.9 Hz, 1 H, H-1_B), 4.97–4.92 (m, 1 H, H-2_D), 4.92–4.76 (m, 4 H, H-4_D and PhC H_2), 4.76–4.65 (m, 3 H, PhCH₂), 4.63 (d, J=7.0 Hz, 1 H, H-1_D), 4.61–4.55 (m, 2 H, PhCH₂), 4.38–4.26 (m, 3 H, H-2_A, H-4_B and PhCH₂), 4.10–4.00 (m, 2 H, H-2_C and H-2_E), 3.97–3.92 (m, 1 H, H-5_A), 3.91–3.82 (m, 3 H, H-5_C and H-5_{abD}), 3.81–3.77 (m, 1 H, H-6_{aB}), 3.75 (s, 3 H, OCH₃), 3.72–3.57 (m, 3 H, H-3_A, H-3_C and H-6_{bB}), 3.56–3.44 (m, 2 H, H-3_E and H-4_E), 3.43–3.35 (m, 2 H, H-4_A and H-4_C), 3.34–3.28 (m, 2 H, H- 3_B and H-5_E), 3.22 (t, J=9.4 Hz, 1 H, H-2_B), 3.03 (s, 3 H, OCH₃), 2.92 (dd, J=12.0 and 8.2 Hz, 1 H, H-5_B), 2.06, 2.03, 1.94 (3 s, 9 H, 3 COCH3), 1.33–1.24 (m, 6 H, 2 CCH₃), 0.83 (d, J=6.1 Hz, 3 H, CCH₃); ¹³C NMR (75 MHz, CDCl3): δ 169.7, 169.2, 168.9 (3 COCH3), 154.8–114.4 (Ar-C), 103.8 (C-1_B), 101.7 (PhCH), 100.8 $(C-1_D)$, 99.4 $(C-1_C)$, 97.9 $(C-1_E)$, 97.1 $(C-1_A)$, 82.8 $(C-4_A)$, 81.8 (C-3_A), 81.4 (C-2_B), 81.1 (C-3_B), 80.6 (C-5_A), 79.5 (C-5_E), 78.4 (C-4_C), 77.8 (C-4_E), 76.8 (2 C, C-4_B and C- (4_D) , 76.2 (C-3_C), 74.8 (PhCH₂), 74.6 (PhCH₂), 74.5 (PhCH₂), 74.4 (PhCH₂), 73.5 (PhCH₂), 71.3 (C-3_D), 70.9 $(C-2_D)$, 70.7 $(C-3_E)$, 68.7 $(C-6_B)$, 68.6 $(C-2_C)$, 68.5 $(C-2_A)$, 67.9 (2 C, C-5_C and C-2_E), 66.3 (C-5_B), 61.1 (C-5_D), 58.1

(OCH3), 55.4 (OCH3), 20.7 (COCH3), 20.6 (COCH3), 20.5 (COCH₃), 18.2 (CCH₃), 18.0 (CCH₃), 17.3 (CCH₃); ESI-MS: $m/z = 1,553.4$ [M+NH₄]⁺; Anal. Calcd. for C₈₅H₉₈O₂₆ (1,534.63): C, 66.48; H, 6.43; found: C, 66.30; H, 6.64.

4-Methoxyphenyl [2-O-acetyl-4,6-O-benzylidene-3-O-(4 methoxybenzyl)-β-D-glucopyranosyl]-(1→3)-(4-O-benzyl-2-O-methyl- α -L-rhamnopyranosyl)-(1→3)-[(2,3,4-tri-O $acceptl-\beta-D-xylopyranosyl)-(1\rightarrow 2)-4-O-benzyl-\alpha-L-rhamno$ pyranosyl]-(1→3)-(2-O-benzyl-4,6-O-benzylidene-β-D-glucopyranosyl)- $(1\rightarrow 3)$ -2,4-di-O-benzyl- α -L-rhamnopyranoside (21) To a solution of compound 20 $(2.7 g, 1.76 mmol)$ and compound 5 (1 g, 2.1 mmol) in dry CH_2Cl_2 (30 ml) was added MS 4 Å (3 g) and the reaction mixture was stirred at room temperature for 20 min under argon. The reaction mixture was cooled to −40°C and N-iodosuccinimide (570 g, 2.5 mmol) and TMSOTf (15 μ l, 0.08 mmol) were added to it. The mixture was stirred at same temperature for 30 min and quenched with Et_3N (0.1 ml). The reaction mixture was filtered and washed with CH_2Cl_2 (50 ml). The organic layer was washed successively with 10% aq Na₂S₂O₃ and water, dried (Na₂SO₄) and concentrated under reduced pressure to give crude product, which was purified over $SiO₂$ using hexane–EtOAc (5:1) as eluant to furnish pure 21 (2.8 g, 82%); colorless solid; m.p. 95° C; $[\alpha]_{D}^{25}$ –55.2 (c 1.5, CHCl₃); IR (KBr): 2,934, 2,365, 2,339, 1,753, 1,595, 1,509, 1,457, 1,355, 1,226, 1,096, 748, 697 cm−¹ ; 1 H NMR (300 MHz, CDCl3): δ 7.50–7.09 (m, 37 H, Ar-H), 6.90 (d, J=9.1 Hz, 2 H, Ar-H), 6.78 (d, J= 8.5 Hz, 2 H, Ar-H), 6.76 (d, J=9.1 Hz, 2 H, Ar-H), 5.49 (brs, 2 H, 2 PhCH), 5.29 (d, $J=1.5$ Hz, 1 H, H-1_A), 5.24 (brs, 1 H, H-1_C), 5.10–5.02 (m, 1 H, H-2_F), 5.01 (brs, 1 H, $H-1_E$), 5.00–4.85 (m, 5 H, H-1_B and PhCH₂), 4.84–4.76 (m, 4 H, H-1_D, H-2_D, H-3_D and H-4_D), 4.75–4.62 (m, 4 H, H-1_F and PhC H_2), 4.61–4.48 (m, 4 H, PhC H_2), 4.36–4.27 (m, 3 H, H-2_A, H-4_B and PhC*H*₂), 4.12 (dd, *J*=10.0 and 3.2 Hz, 1 H, H-2_E), 4.06–3.97 (m, 2 H, H-2_C and H-5_E), 3.96–3.85 (m, 4 H, H-5_A, H-5_C and H-5_{abD}), 3.83–3.77 (m, 2 H, H-3_A and H-6_{aB}), 3.75 (s, 3 H, OCH₃), 3.74 (s, 3 H, OCH₃), 3.73–3.57 (m, 6 H, H-3_C, H-6_{bB}, H-3_F, H-4_F and H-6_{abF}), 3.57–3.47 (m, 2 H, H-4_C and H-4_E), 3.46–3.35 (m, 3 H, H- 4_A , H-3_B and H-5_F), 3.34–3.22 (m, 2 H, H-2_B and H-3_E), 3.19 (s, 3 H, OCH₃), 3.01–2.91 (m, 1 H, H-5_B), 2.04, 2.00, 1.95 (3 s, 9 H, 3 COCH3), 1.71 (s, 3 H, COCH3), 1.30–1.22 $(m, 6 H, 2 CCH_3), 0.83 (d, J=6.1 Hz, 3 H, CCH_3);$ ¹³C NMR (75 MHz, CDCl₃): δ 169.5, 169.2, 168.9, 168.8, (4 $COCH₃$), 159.1–113.6 (Ar-C), 103.9 (C-1_B), 101.8 (2 C, 2 PhCH), 101.2 (C-1_D), 100.4 (C-1_F), 99.9 (C-1_E), 99.4 (C- 1_c), 97.2 (C-1_A), 82.8 (C-4_A), 81.5 (C-3_A), 81.4 (C-2_B), 80.7 (C-3_B), 80.0 (2 C, C-5_A and C-5_E), 79.9 (C-4_C), 79.6 $(C-4_E)$, 78.5 $(C-4_B)$, 78.4 $(C-4_D)$, 77.9 $(C-3_C)$, 77.5 $(C-3_E)$, 76.9 (C-3_F), 76.5 (C-4_F), 74.7 (PhCH₂), 74.6 (2 C, 2 PhCH₂), 74.5 (PhCH₂), 73.5 (PhCH₂), 73.4 (PhCH₂), 73.0 $(C-2_F)$, 70.4 (3 C, C-2_C, C-2_D and C-3_D), 68.8 (C-6_B), 68.6 $(C-2_A)$, 68.5 $(C-2_E)$, 68.4 $(C-6_F)$, 67.9 $(C-5_C)$, 66.4 $(C-5_B)$, 66.0 (C-5_F), 61.0 (C-5_D), 59.1 (OCH₃), 55.4 (OCH₃), 55.0 (OCH3), 20.8 (COCH3), 20.7 (COCH3), 20.6 (2 C, 2 COCH₃), 18.1 (CCH₃), 18.0 (CCH₃), 17.3 (CCH₃); ESI-MS: $m/z = 1,964.5$ [M+NH₄]⁺; Anal. Calcd. for $C_{108}H_{122}O_{33}$ (1,946.79): C, 66.59; H, 6.31; found: C, 66.42; H, 6.55.

4-Methoxyphenyl [2-O-benzyl-4,6-O-benzylidene-3-O-(4 methoxybenzyl)-β-D-glucopyranosyl]-(1→3)-(4-O-benzyl-2-O-methyl- α -L-rhamnopyranosyl)-(1→3)-[(2,3,4-tri-Obenzyl-β-D-xylopyranosyl)-(1→2)-4-O-benzyl-α-L-rhamnopyranosyl]- $(1\rightarrow 3)$ - $(2$ -O-benzyl-4,6-O-benzylidene- β -D-glucopyranosyl)-(1→3)-2,4-di-O-benzyl-α-L-rhamnopyranoside (22) To a solution of compound 21 (2.5 g, 1.3 mmol) in THF (20 ml) were added crushed NaOH (250 mg), benzyl bromide (730 μl, 6.14 mmol) and Bu₄NBr (100 mg) and the reaction mixture was stirred briskly at room temperature for 5 h. The reaction mixture was diluted with water (100 ml) and extracted with CH_2Cl_2 (100 ml). The organic layer was washed with water, dried (Na_2SO_4) and concentrated under reduced pressure to give the crude product, which was purified over $SiO₂$ using hexane– EtOAc $(7:1)$ to give pure 22 $(2.5 \text{ g}, 90\%);$ colorless solid; m.p. 68°C; $[\alpha]_D^{25}$ –35.7 (c 1.5, CHCl₃); IR (KBr): 2,929, 2,362, 2,339, 1,594, 1,508, 1,456, 1,382, 1,353, 1,086, 996, 737, 696 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.51-7.07 $(m, 57 H, Ar-H), 6.92 (d, J=9.1 Hz, 2 H, Ar-H), 6.79 (d, J=$ 9.3 Hz, 2 H, Ar-H), 6.75 (d, J=8.7 Hz, 2 H, Ar-H), 5.53 (s, 1 H, PhCH), 5.37 (brs, 2 H, H-1_C and PhCH), 5.33 (d, $J=$ 1.6 Hz, 1 H, H-1_A), 5.16 (d, $J=12.0$ Hz, 1 H, PhC H_2), 5.12 (brs, 1 H, H-1_E), 5.01 (d, J=11.8 Hz, 1 H, PhC H_2), 4.99– 4.93 (m, 3 H, H-1 $_{\rm B}$ and PhCH₂), 4.92–4.75 (m, 7 H, PhCH₂), 4.74–4.59 (m, 4 H, PhCH₂), 4.71 (d, J=7.2 Hz, 1 H, H-1_F), 4.63 (d, J=7.0 Hz, 1 H, H-1_D), 4.55–4.43 (m, 3 H, PhCH₂), 4.42-4.27 (m, 5 H, H-3_A, H-3_E, H-4_B and PhCH₂), 4.26–4.03 (m, 6 H, H-2_A, H-5_A, H-2_C, H-5_C, H-2_E and H-5_E), 4.02–3.89 (m, 3 H, H-6_{aB} and H-5_{abD}), 3.87– 3.79 (m, 1 H, H-3_C), 3.73 (brs, 6 H, 2 OC H_3), 3.72–3.59 (m, 2 H, H-6_{bB} and H-6_{aF}), 3.58–3.49 (m, 5 H, H-4_A, H-4_C, $H-3_D$, $H-4_E$ and $H-6_{bE}$), 3.48–3.31 (m, 7 H, $H-2_B$, $H-3_B$, H- 2_D , H-4_D, H-2_F, H-3_F and H-4_F), 3.24 (s, 3 H, OCH₃), 3.03–2.88 (m, 2 H, H-5_B and H-5_F), 1.33 (d, J=6.2 Hz, 3 H, CCH₃), 1.26 (d, J=6.1 Hz, 3 H, CCH₃), 0.87 (d, J= 5.6 Hz, 3 H, CCH₃); ¹³C NMR (75 MHz, CDCl₃): δ 159.0– 113.6 (Ar-C), 104.3 (C-1_D), 103.7 (C-1_B), 103.6 (C-1_F), 101.7 (PhCH), 100.9 (PhCH), 100.1 (C-1_C), 99.8 (C-1_E), 97.3 (C-1_A), 83.9 (C-4_A), 83.1 (C-3_A), 82.4 (C-2_B), 81.9 (C-3_B), 81.5 (C-5_A), 81.4 (2 C, C-4_E and C-5_E), 80.9 (C-4_C), 80.6 (C-2_D), 80.5 (C-3_D), 79.6 (C-4_B), 78.3 (C-4_D), 77.9 (C-3_C), 77.7 (2 C, C-3_E and C-3_F), 76.9 (C-4_F), 76.8 $(C-2_C)$, 76.4 $(C-2_F)$, 74.8–72.8 (10 C, 10 PhCH₂), 68.8 (C-

6_B), 68.7 (C-2_A), 68.5 (C-2_E), 68.4 (C-6_F), 67.9 (C-5_C), 66.3 (C-5_B), 65.8 (C-5_F), 63.2 (C-5_D), 59.2 (OCH₃), 55.6 (OCH_3) , 55.2 (OCH_3) , 18.1 (CCH_3) , 17.9 (CCH_3) , 17.4 (CCH₃); ESI-MS: $m/z = 2,162.0$ [M+Na]⁺; Anal. Calcd. for $C_{128}H_{138}O_{29}$ (2,138.93): C, 71.82; H, 6.50; found: C, 71.65; H, 6.70.

4-Methoxyphenyl (2-O-benzyl-4,6-O-benzylidene-β-D-glucopyranosyl)- $(1\rightarrow 3)$ - $(4$ -O-benzyl-2-O-methyl- α -L-rhamno $pyranosyl$)- $(1\rightarrow 3)$ - $[(2,3,4-tri-O-benzyl-β-D-xylopyranosyl)$ -(1→2)-4-O-benzyl-α-L-rhamnopyranosyl]-(1→3)-(2-Obenzyl-4,6-O-benzylidine- β -D-glucopyranosyl)-(1→3)-2,4 $di-O-benzyl-\alpha-L-rhamnopy ranoside$ (23) To a solution of compound 22 (2.1 g, 1 mmol) in CH_2Cl_2 and water (30 ml, 1:1), was added DDQ (270 mg, 1.2 mmol) and the reaction mixture was stirred at room temperature for 2 h and diluted with CH_2Cl_2 (50 ml). The organic layer was washed successively with satd. aq $NaHCO₃$ and water, dried (Na_2SO_4) and concentrated under reduced pressure to give the crude product, which was purified over $SiO₂$ using hexane–EtOAc (5:1) as eluant to furnish pure 23 (1.7 g, 86%); colorless solid; m.p. 95°C; $[\alpha]_D^{25}$ -41.4 (c 1.5, CHCl3); IR (KBr): 2,930, 2,363, 2,339, 1,591, 1,505, 1,456, 1,354, 1,214, 1,100, 738, 696 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.49–7.05 (m, 55 H, Ar-H), 6.90 (d, J=9.1 Hz, 2 H, Ar-H), 6.77 (d, J=9.1 Hz, 2 H, Ar-H), 5.52 (s, 1 H, PhCH), 5.34 (brs, 1 H, H-1_C), 5.31 (brs, 2 H, H-1_A and PhCH), 5.14 (d, $J=12.0$ Hz, 1 H, PhCH₂), 5.10 (brs, 1 H, H-1_E), 4.99 (d, J=11.4 Hz, 1 H, PhCH₂), 4.95 (d, J= 7.3 Hz, 1 H, H-1_B), 4.94–4.79 (m, 6 H, PhC H_2), 4.78–4.72 (m, 3 H, PhC H_2), 4.71–4.57 (m, 4 H, H-1_D, H-1_F and PhC H_2), 4.55–4.45 (m, 3 H, PhC H_2), 4.40–4.28 (m, 3 H, H-3_A and PhCH₂), 4.27–4.04 (m, 6 H, H-2_A, H-4_B, H-2_C, $H-2_E$, H-3_E and H-5_E), 4.01–3.88 (m, 3 H, H-5_A, H-6_{aB} and $H-5_C$), 3.85–3.66 (m, 2 H, $H-6_{bB}$ and $H-6_{aF}$), 3.75 (s, 3 H, OCH₃), 3.64–3.49 (m, 5 H, H-3_C, H-3_D, H-5_{abD} and H- 6_{bF}), 3.48–3.24 (m, 10 H, H-4_A, H-2_B, H-3_B, H-4_C, H-2_D, H-4_D, H-4_E, H-2_F, H-3_F and H-4_F), 3.21 (s, 3 H, OCH₃), 2.99–2.85 (m, 2 H, H-5_B and H-5_F), 1.35 (d, J=6.1 Hz, 3 H, CCH₃), 1.26 (d, $J=6.0$ Hz, 3 H, CCH₃), 0.84 (d, $J=$ 6.1 Hz, 3 H, CCH₃); ¹³C NMR (75 MHz, CDCl₃): δ 154.8– 114.5 (Ar-C), 104.4 (C-1_D), 103.7 (C-1_B), 103.4 (C-1_F), 101.7 (PhCH), 101.5 (PhCH), 100.0 (C-1_C), 99.6 (C-1_E), 97.3 (C-1_A), 83.9 (C-4_A), 83.1 (C-3_A), 82.0 (C-2_B), 81.9 (C-3_B), 81.3 (2 C, C-5_A and C-5_E), 80.8 (C-4_E), 80.6 (C-4_C), 80.3 (C-2_D), 79.6 (C-3_D), 78.3 (C-4_B), 78.1 (C-4_D), 77.7 (C-3_C), 77.6 (C-3_E), 76.9 (2 C, C-2_C and C-2_F), 76.4 $(C-4_F)$, 75.6–72.8 (9 C, 9 PhCH₂), 73.1 (C-3_F), 68.7 (C-6_B), 68.6 (C-2_A), 68.5 (C-2_E), 68.4 (C-6_F), 67.9 (C-5_C), 66.3 (C- 5_B), 65.7 (C-5_F), 63.2 (C-5_D), 59.1 (OCH₃), 55.6 (OCH₃), 18.1 (CCH₃), 17.9 (CCH₃), 17.4 (CCH₃); ESI-MS: $m/z=$ 2,043.0 [M+Na]⁺; Anal. Calcd. for C₁₂₀H₁₃₀O₂₈ (2,020.30): C, 71.34; H, 6.49; found: C, 71.18; H, 6.70.

4-Methoxyphenyl (4-O-acetyl-3-O-benzyl-2-O-methyl-α-Lfucopyranosyl)-(1→3)-(2-O-benzyl-4,6-O-benzylidene-β-Dglucopyranosyl)-(1→3)-(4-O-benzyl-2-O-methyl- α -L-rham $nopy ranosyl$ - $(1\rightarrow 3)$ - $[(2,3,4-tri-O-benzyl-\beta-D-xylopyrano$ syl)-(1→2)-4-O-benzyl- α -L-rhamnopyranosyl]-(1→3)-(2-O-benzyl-4,6-O-benzylidene-β-D-glucopyranosyl)-(1→3)- 2,4-di-O-benzyl- α -L-rhamnopyranoside (24) To a solution of compound 23 (1.5 g, 0.74 mmol) and compound 10 (320 mg, 0.9 mmol) in dry CH_2Cl_2 (20 ml) was added MS 4 Å (3 g) and the reaction mixture was stirred at room temperature for 20 min under argon. The reaction mixture was cooled to -40° C and N-iodosuccinimide (240 mg, 1.1 mmol) and TMSOTf $(6 \mu l, 0.03 \text{ mmol})$ were added to it. The reaction mixture was stirred at same temperature for 30 min and quenched with Et_3N (50 μl). The reaction mixture was filtered and washed with $CH₂Cl₂$ (30 ml). The organic layer was successively washed with 10% aq $Na₂S₂O₃$ and water, dried (Na₂SO₄) and concentrated under reduced pressure to give crude product, which was purified over $SiO₂$ using hexane–EtOAc (5:1) as eluant to furnish pure 24 (1.3 g, 76%); colorless solid; m.p. 92°C; $[\alpha]_D^2$ ²⁵ −61.8 (c 1.5, CHCl3); IR (KBr): 2,929, 2,364, 1,740, 1,593, 1,505, 1,456, 1,377, 1,236, 1,097, 737, 696 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.51–7.05 (m, 60 H, Ar-H), 6.91 (d, J=9.1 Hz, 2 H, Ar-H), 6.78 (d, J=9.1 Hz, 2 H, Ar-H), 5.52 $(s, 1 H, PhCH), 5.50 (d, J=4.0 Hz, 1 H, H-1_G), 5.37 (brs, 1$ H, H-1_C), 5.33 (brs, 1 H, H-1_A), 5.28 (s, 1 H, PhC*H*), 5.20 (d, J=2.9 Hz, 1 H, H-4_G), 5.23–5.17 (m, 1 H, PhC H_2), 5.17–5.10 (m, 1 H, PhC H_2), 5.08 (brs, 1 H, H-1_E), 5.05– 4.83 (m, 5 H, PhC H_2), 4.96 (d, J=7.9 Hz, 1 H, H-1_B), 4.82–4.58 (m, 8 H, H-1_D, H-1_F and PhC H_2), 4.53–4.42 (m, 3 H, PhC H_2), 4.40–4.24 (m, 6 H, H-3_A, H-3_E and PhC H_2), 4.22–4.06 (m, 5 H, H-2_A, H-4_B, H-2_C, H-2_E and H-5_E), 4.05–3.90 (m, 4 H, H-5_A, H-6_{aB}, H-5_C and H-6_{aF}), 3.87– 3.78 (m, 3 H, H-6 $_{\text{bB}}$ and H-5 $_{\text{abD}}$), 3.75–3.71 (m, 1 H, H- 6_{bF}), 3.74 (s, 3 H, OCH₃), 3.70–3.50 (m, 6 H, H-4_A, H-3_C, $H-3_D$, $H-4_E$, $H-2_G$ and $H-3_G$), 3.48–3.36 (m, 7 H, $H-2_B$, H- 3_B , H-4_C, H-2_D, H-4_D, H-2_F and H-3_F), 3.32 (s, 3 H, OCH₃), 3.29 (s, 3 H, OCH₃), 3.27–3.18 (m, 2 H, H-4_F and H-5_G), 3.04–2.83 (m, 2 H, H-5_B and H-5_F), 1.31 (d, J= 6.1 Hz, 3 H, CCH₃), 1.26 (d, $J=6.0$ Hz, 3 H, CCH₃), 0.87 $(d, J=6.1 \text{ Hz}, 3 \text{ H}, CCH_3), 0.67 (d, J=6.4 \text{ Hz}, 3 \text{ H}, CCH_3);$ ¹³C NMR (75 MHz, CDCl₃): δ 170.7 (COCH₃), 154.8– 114.5 (Ar-C), 104.4 (C-1_D), 103.7 (C-1_B), 103.4 (C-1_F), 101.7 (PhCH), 101.6 (PhCH), 100.4 (C-1_E), 100.1 (C-1_C), 98.0 (C-1_G), 97.3 (C-1_A), 83.8 (2 C, C-4_A and C-3_G), 83.2 $(C-3_A)$, 81.9 $(C-3_F)$, 81.3 (2 C, $C-2_B$ and $C-3_B$), 81.2 (C-5_A), 80.9 (C-5_E), 79.6 (C-2_D), 79.2 (C-4_C), 78.3 (C-4_E), 78.2 (C-2_G), 77.6 (C-3_D), 77.4 (C-4_B), 77.2 (C-4_D), 77.0 (C-3_C), 76.9 (2 C, C-2_C and C-2_F), 76.5 (C-3_E), 76.0 (C-4_F), 75.6–71.6 (10 C, 10 PhCH₂), 70.7 (C-4_G), 68.8 (C-6_B), 68.6 (C-2_A), 68.5 (2 C, C-2_E and C-6_F), 67.9 (C-5_C), 66.3 $(C-5_B)$, 66.0 $(C-5_F)$, 64.3 $(C-5_G)$, 63.2 $(C-5_D)$, 60.5

(OCH3), 59.7 (OCH3), 55.6 (OCH3), 20.8 (COCH3), 18.0 (CCH₃), 17.9 (CCH₃), 17.4 (CCH₃), 15.6 (CCH₃); ESI-MS: $m/z = 2,330.0$ [M+NH₄]⁺; Anal. Calcd. for C₁₃₆H₁₅₀O₃₃ (2,312.63): C, 70.63; H, 6.54; found: C, 70.44; H, 6.70.

4-Methoxyphenyl (4-O-acetyl-2-O-methyl-α-L-fucopyranosyl)- $(1\rightarrow 3)$ - $(\beta$ -D-glucopyranosyl)- $(1\rightarrow 3)$ - $(2$ -O-methyl- α -Lrhamnopyranosyl)- $(1\rightarrow 3)$ - $[(\beta$ -D-xylopyranosyl)- $(1\rightarrow 2)$ - α -L-rhamnopyranosyl]- $(1\rightarrow 3)$ - $(\beta$ -D-glucopyranosyl)- $(1\rightarrow 3)$ - α -L-rhamnopyranoside (1) To a solution of compound 24 $(1 \text{ g}, 0.43 \text{ mmol})$ in CH₃OH:toluene $(3:1, 25 \text{ ml})$ was added 20% Pd(OH)₂/C (500 mg) and the reaction mixture was allowed to stir at room temperature under a positive pressure of hydrogen for 24 h. The reaction mixture was filtered through a Celite® bed and evaporated to dryness to give heptasaccharide 1, which was purified through a Sephadex LH-20 column using $CH₃OH–water$ (4:1) as eluant (430 mg, 81%); white powder; $[\alpha]_D^{25}$ -71.0 (c 1.0, H2O); IR (KBr): 2,920, 2,367, 1,741, 1,650, 1,542, 1,512, 1,457, 1,425, 1,377, 1,271, 1,035, 672 cm⁻¹; ¹H NMR (300 MHz, D₂O): δ 7.17 (d, J=8.9 Hz, 2 H, Ar-H), 7.05 (d, $J=8.8$ Hz, 2 H, Ar-H), 5.65 (brs, 1 H, H-1_C), 5.50 (brs, 2 H, $H-1_A$ and $H-1_G$), 5.31 (brs, 1 H, $H-1_E$), 5.29 (brs, 1 H, H- 4_G), 4.71 (d, J=7.9 Hz, 2 H, H-1_B and H-1_F), 4.63–4.57 (m, 1 H, H-5_A), 4.56 (d, J=7.5 Hz, 1 H, H-1_D), 4.47 (brs, 1 H, H-2_A), 4.23 (brs, 1 H, H-2_G), 4.21–4.10 (m, 3 H, H-3_A, H- 4_C and H-3_E), 4.09–3.90 (m, 10 H, H-4_B, H-6_{aB}, H-2_D, H- 4_D , H-5_{abD}, H-2_E, H-4_E, H-6_{aF} and H-3_G), 3.87 (s, 3 H, OCH₃), 3.86–3.79 (m, 2 H, H-3_B and H-3_F), 3.78–3.47 (m, 12 H, H-4_A, H-2_B, H-6_{bB}, H-2_C, H-3_C, H-5_C, H-3_D, H-4_E, $H-5_E$, $H-2_E$, $H-6_{hF}$ and $H-5_G$), 3.58 (s, 3 H, OCH₃), 3.50 (s, 3 H, OCH₃), 3.46–3.30 (m, 2 H, H-5_B and H-5_F), 1.39 (d, $J=5.9$ Hz, 3 H, CCH₃), 1.33 (d, $J=5.7$ Hz, 3 H, CCH₃), 1.31 (d, $J=5.8$ Hz, 3 H, CCH₃), 1.15 (d, $J=6.4$ Hz, 3 H, CCH₃); ¹³C NMR (75 MHz, D₂O): δ 174.0 (COCH₃), 154.7 (Ar-C), 149.4 (Ar-C), 118.8 (2 C, Ar-C), 115.1 (2 C, Ar-C), 105.4 (C-1_D), 103.9 (C-1_B), 103.7 (C-1_F), 99.9 (C- 1_G), 98.9 (C-1_A), 98.5 (C-1_E), 96.3 (C-1_C), 82.2 (H-3_E), 80.9 (H-3_A), 80.3 (C-2_E), 80.0 (C-2_G), 79.9 (C-4_C), 79.2 $(C-3_G)$, 77.4 $(C-4_D)$, 76.8 $(C-2_D)$, 75.8 $(C-4_G)$, 75.7 $(2\ C,$ C-4_B and C-5_E), 74.4 (C-4_F), 74.1 (2 C, C-3_B and C-3_F), 73.1 (C-3_C), 72.1 (C-4_A), 71.1 (C-2_C), 71.0 (C-2_A), 69.7 (C-3_D), 69.3 (2 C, C-4_E and C-2_F), 69.1 (C-2_B), 68.9 (C-5_G), 68.0 (C-5_F), 67.7 (C-5_C), 67.0 (C-5_A), 65.3 (C-5_B), 65.1 (C-5_D), 60.9 (C-6_B), 60.5 (C-6_F), 57.9 (OCH₃), 57.4 (OCH3), 55.8 (OCH3), 20.3 (COCH3), 16.8 (CCH3), 16.7 (CCH₃), 16.4 (CCH₃), 15.1 (CCH₃); ESI-MS: $m/z=1,252.2$ [M+NH₄]⁺; Anal. Calcd. for $C_{52}H_{82}O_{33}$ (1,234.47): C, 50.56; H, 6.69; found: C, 50.38; H, 6.95.

Acknowledgements Instrumentation facilities from SAIF, CDRI is gratefully acknowledged. C.M. thanks CSIR, New Delhi for providing a Senior Research fellowship. This work was supported by Ramanna

Fellowship (AKM), Department of Science and Technology, New Delhi (SR/S1/RFPC-06/2006).

References

- 1. Sommers, M.H.: Disease due to mycobacteria other than Mycobacterium tuberculosis. In: Youmans, P.G. (ed.) Tuberculosis, pp. 399–400. Saunders, Philadelphia (1979)
- 2. Wallace, R.J. Jr, Brown, B.A., Griffith, D.E.: Nosocomial outbreaks/pseudo-outbreaks caused by nontuberculous mycobacteria. Annu. Rev. Microbiol 52, 453–490 (1998)
- 3. Fujita, J., Nanki, N., Negayama, K., Tsutsui, S., Taminato, T., Ishida, T.: Nosocomial contamination by Mycobacterium gordonae in hospital water supply and super-oxidized water. J. Hosp. Infect 51, 65–68 (2002)
- 4. Wayne, L., Sramek, H.: Agents of newly recognized or infrequently encountered mycobacterial diseases. Clin. Microbiol. Rev 5, 1–25 (1992)
- 5. Lai, K.K., Brown, B.A., Westerling, J.A., Fontecchio, S.A., Zhang, Y., Wallace, R.J. Jr: Long-term laboratory contamination by Mycobacterium abscessus resulting in two pseudo-outbreaks: recognition with use of random amplified polymorphic DNA (RAPD) polymerase chain reaction. Clin. Infect. Dis. 27, 169–175 (1998)
- 6. Weinberger, M., Berg, S.L., Feuerstein, I.M., Pizzo, P.A., Witebsky, F.G.: Disseminated infection with Mycobacterium gordonae: report of a case and critical review of the literature. Clin. Infect. Dis. 14, 1229–1239 (1992)
- 7. Busillo, C., Lessnau, K.D., Soumakis, S., Davidson, M., Mullen, M.P., Talavera, W.: Multidrug resistant Mycobacterium tuberculosis in patients with human immunodeficiency virus infection. Chest 102, 797–801 (1992)
- 8. Dizon, D., Mihailescu, C., Bae, H.C.: Simple procedure for detection of *Mycobacterium gordonae* in water causing falsepositive acid-fast smears. J. Clin. Microbiol. 3, 211–216 (1976)
- 9. Lessnau, K.D., Milanese, S., Talavera, W.: Mycobacterium gordonae: a treatable disease in HIV-positive patients. Chest 104, 1779–1785 (1993)
- 10. Chapman, S.J.: The atypical mycobacteria and human mycobacteriosis, pp. 86–90. Plenum, New York (1977)
- 11. Stine, T.M., Harris, A.A., Levin, S., Rivera, N., Kaplan, R.L.: A pseudoepidemic due to atypical mycobacteria in a hospital water supply. JAMA 258, 809–811 (1987)
- 12. Barber, T.W., Craven, D.E., Farber, H.W.: Mycobacterium gordonae: a possible opportunistic respiratory tract pathogen in patients with advanced human immunodeficiency virus, type 1 infection. Chest 100, 716–720 (1991)
- 13. Hunter, S.W., Jardine, I., Yanagihara, D.L., Brennan, P.J.: Trehalose containing lipooligosaccharides from mycobacteria: structures of the oligosaccharide segments and recognition of a unique N-alkylkanosamine-containing epitope. Biochemistry 24, 2798–2805 (1985)
- 14. Brennan, P.J., Heifets, M., Ullom, B.P.: Thin-layer chromatography of lipid antigens as a means of identifying nontuberculous mycobacteria. J. Clin. Microbiol. 15, 447–455 (1982)
- 15. Hunter, S.W., Barr, V.L., McNeil, M., Jardine, I., Brennan, P.J.: Trehalose containing lipooligosaccharide antigens of Mycobacterium sp.: presence of a mono O-methyl-tri-O-acyltrehalose "core". Biochemistry 27, 1549–1556 (1988)
- 16. Besra, G.S., McNeil, M.R., Khoo, K.-H., Dell, A., Morris, H.R., Brennan, P.J.: Trehalose-containing lipooligosaccharides of Mycobacterium gordonae: presence of a mono-O-methyltetra-Oacyltrehalose "core" and branching in the oligosaccharide backbone. Biochemistry 32, 12705–12714 (1993)
- 17. Verez-Bencomo, V., Fernández-Santana, V., Hardy, E., Toledo, M. E., Rodríguez, M.C., Heynngnezz, L., Rodriguez, A., Baly, A., Herrera, L., Izquierdo, M., Villar, A., Valdés, Y., Cosme, K., Deler, M.L., Montane, M., Garcia, E., Ramos, A., Aguilar, A., Medina, E., Toraño, G., Sosa, I., Hernandez, I., Martínez, R., Muzachio, A., Carmenates, A., Costa, L., Cardoso, F., Campa, C., Diaz, M., Roy, R.: A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science 305, 522–525 (2004)
- 18. Pozsgay, V.: Synthesis of glycoconjugate vaccines against Shigella dysenteriae type 1. J. Org. Chem. 63, 5983–5999 (1998)
- 19. Pozsgay, V.: Synthetic Shigella vaccines: a carbohydrate–protein conjugate with totally synthetic hexadecasaccharide haptens. Angew. Chem. Int. Ed. Engl. 37, 138–142 (1998)
- 20. Taylor, R.K., Kirn, T.J., Bose, N., Stonehouse, E., Tripathi, S.A., Kovác, P., Wade, W.F.: Progress towards development of a cholera subunit vaccine. Chem. Biodivers. 1, 2036–2057 (2004)
- 21. Meeks, M.D., Saksena, R., Ma, X., Wade, T.K., Taylor, R.K., Kovác, P., Wade, W.F.: Synthetic fragments of Vibrio cholerae O1 Inaba O-specific polysaccharide bound to a protein carrier are immunogenic in mice but do not induce protective antibodies. Infect. Immun. 72, 4090–4101 (2004)
- 22. Saksena, R., Zhang, J., Kovác, P.: Immunogens from a synthetic hexasaccharide fragment of the O-SP of *Vibrio cholerae* O:1, serotype Ogawa. Tetrahedron: Asymmetry 16, 187–197 (2005)
- 23. Snippe, H., van Dam, J.E.G., van Houte, A.J., Willers, J.M.N., Kamerling, J.P., Vliegenthart, J.F.G.: Preparation of a semisynthetic vaccine to Streptococcus pneumoniae type 3. Infect. Immun. 42, 842–844 (1983)
- 24. Michalik, D., Vliegenthart, J.F.G., Kamerling, J.P.: Chemoenzymic synthesis of oligosaccharide fragments of the capsular polysaccharide of Streptococcus pneumoniae type 14. J. Chem. Soc., Perkin Trans. 1, 1973–1981 (2002)
- 25. Jansen, W.T.M., Hogenboom, S., Thijssen, M.J.L., Kamerling, J. P., Vliegenthart, J.F.G., Verhoef, J., Snippe, H., Verheul, A.F.: Synthetic 6B di-, tri-, and tetrasaccharide-protein conjugates contain pneumococcal type 6A and 6B common and 6B-specific epitopes that elicit protective antibodies in mice. Infect. Immun. 69, 787–793 (2001)
- 26. Tamborrini, M., Werz, D.B., Frey, J., Pluschke, G., Seeberger, P. H.: Anti-carbohydrate antibodies for the detection of anthrax spores. Angew. Chem. Int. Ed. Engl. 45, 6581–6582 (2006)
- 27. Buskas, T., Ingale, S., Boons, G.J.: Towards a fully synthetic carbohydrate-based anti-cancer vaccine: synthesis and immunological evaluation of a lipidated glycopeptide containing the tumor-associated Tn-antigen. Angew. Chem. Int. Ed. Engl. 44, 5985–5988 (2005)
- 28. Danishefsky, S.J., Allen, J.R.: From the laboratory to the clinic: a retrospective on fully synthetic carbohydrate-based anticancer vaccines. Angew. Chem. Int. Ed. Engl. 39, 836–63 (2000)
- 29. Schofield, L., Hewitt, M.C., Evans, K., Siomos, M.-A., Seeberger, P.H.: Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature 418, 785–89 (2002)
- 30. Descoteaux, A., Turco, S.J.: Functional aspects of the Leishmania donovani lipophosphoglycan during macrophage function. Microbes Infect. 4, 975–981 (2002)
- 31. Fauré, R., Chieh Shiao, T., Lagnoux, D., Giguère, D., Roy, R.: En route to a carbohydrate-based vaccine against Burkholderia cepacia. Org. Biomol. Chem. 5, 2704–2708 (2007)
- 32. Roy, R.: New trends in carbohydrate-based vaccines. Drug Discov. Today 1, 327–336 (2004) and references cited therein
- 33. Girard, M.P., Preziosi, M.-P., Aguado, M.-T., Kieny, M.P.: A review of vaccine research and development: meningococcal disease. Vaccine 24, 4692–4700 (2006)
- 34. Wang, J.Y., Chang, A.H.C., Guttormsen, H.-K., Rosas, A.L., Kasper, D.L.: Construction of designer glycoconjugate vaccines with size-specific oligosaccharide antigens and site-controlled coupling. Vaccine 21, 1112–1117 (2003)
- 35. Werz, D.B., Seeberger, P.H.: Total synthesis of antigen Bacillus anthracis tetrasaccharide-creation of an Anthrax vaccine candidate. Angew. Chem. Int. Ed. Engl. 44, 6315–6318 (2005)
- 36. van Steijn, A.M.P., Kamerling, J.P., Vliegenthart, J.F.G.: Synthesis of trisaccharide methyl glycosides related to fragments of the capsular polysaccharide of Streptococcus pneumoniae type 18C. Carbohydr. Res. 225, 229–246 (1992)
- 37. Eis, M.J., Ganem, B.: An improved synthesis of D-perosamine and some derivatives. Carbohydr. Res. 176, 316–323 (1988)
- 38. Zuurmond, H.M., van der Klein, P.A.M., van der Marel, G.A., van Boom, J.H.: A stereospecific approach towards the synthesis of 2 deoxy α- and β-glycosides based on a 1,2-ethyl (phenyl) thio group migration. Tetrahedron 49, 6501–6514 (1993)
- 39. Madhusudan, S.K., Agnihotri, G., Negi, D.S., Misra, A.K.: Direct one-pot conversion of acylated carbohydrates into their alkylated derivatives under heterogeneous reaction conditions using solid NaOH and a phase transfer catalyst. Carbohydr. Res. 340, 1373– 1377 (2005)
- 40. Zuurmond, H.M., Veeneman, G.H., van der Marel, G.A., van Boom, J.H.: Iodonium ion-assisted synthesis of a haptenic tetrasaccharide fragment corresponding to the inner cell-wall glycopeptidolipid of Mycobacterium avium serotype 4. Carbohydr. Res. 241, 153–164 (1993)
- 41. Contour, M.-O., Defaye, J., Little, M., Wong, E.: Zirconium(IV) chloride-catalyzed synthesis of 1,2-trans-1-thioglycopyranosides. Carbohydr. Res. 193, 283–287 (1989)
- 42. Veeneman, G.H., van Leeuwen, S.H., van Boom, J.H.: Iodonium ion promoted reactions at the anomeric centre. II An efficient thioglycoside mediated approach toward the formation of 1,2 trans linked glycosides and glycosidic esters. Tetrahedron Lett. 31, 1331–1334 (1990)
- 43. Konradsson, P., Udodong, U.E., Fraser-Reid, B.: Iodonium promoted reactions of disarmed thioglycosides. Tetrahedron Lett. 31, 4313–4316 (1990)
- 44. Okiawa, Y., Yoshioko, T., Yonemitsu, O.: Specific removal of Omethoxybenzyl protection by DDQ oxidation. Tetrahedron Lett. 23, 885–888 (1982)
- 45. Gurjar, M.K., Adhikari, S.: Synthesis of the unique terminal branched tetrasaccharide of Mycobacterium gordonae strain 990. Tetrahedron 53, 8629–8634 (1997)
- 46. Bock, K., Pederson, C.: A study of 13CH coupling constants in hexopyranoses. J. Chem. Soc., Perkin Trans. 2, 293–297 (1974)
- 47. Crich, D., Li, H.: Synthesis of the Salmonella Type E_1 core trisaccharide as a probe for the generality of 1-(benzenesulfinyl) piperidine/triflic anhydride combination for glycosidic bond formation from thioglycosides. J. Org. Chem. 67, 4640–4646 (2002)
- 48. Pearlman, W.M.: Noble metal hydroxides on carbon nonpyrophoric dry catalysts. Tetrahedron Lett. 8, 1663–1664 (1967)